首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为从微观上探讨H_2O和CH_4在煤表面竞争吸附的机理,构建C30H14(9个苯环)代表煤局部表面,通过密度泛函理论分析甲烷分子,水分子和煤局部表面之间的相互作用。结果表明,水分子在煤表面的吸附比甲烷分子在煤表面的吸附更加稳定,二者以最稳定吸附构型吸附时的吸附能分别为-13.23 kJ/mol和-10.13 kJ/mol.当甲烷分子与已吸附水分子的煤表面作用时,甲烷分子吸附能显著下降,吸附平衡距离增大,表明水分子能迫使甲烷吸附到不稳定位置。水分子和甲烷共存时,水分子处于吸附状态,甲烷分子处于脱附状态且总能量最低,进而从分子水平表明水和甲烷竞争吸附时水处于主导地位。  相似文献   

2.
本文利用基于密度泛函理论的第一性原理赝势平面波方法研究了s-Ⅲ型水分子笼状结构和s-Ⅲ型CH_4气体水合物笼状结构的晶格常数、体弹模量等基本物性参数,发现在0~2.6 GPa压强范围内两种笼状结构均可以稳定存在,晶胞体积随着压强增大而近似线性减小. s-Ⅲ型CH_4气体水合物中由于CH_4分子间的作用力导致甲烷水合物体积发生膨胀,但是体积增大幅度较小且比较均匀,平均增幅在3.97%左右.最后根据能带结构和电子态密度计算结果发现s-Ⅲ型CH_4气体水合物为绝缘体,不具有导电性.  相似文献   

3.
利用GROMACS程序对0.1 MPa至30 MPa较宽压力范围内甲烷水合物体系进行分子动力学模拟.观察不同时刻甲烷水合物体系的分子分布状况,统计氢键数、径向分布函数、配位数等结构性质以及甲烷、水分子的扩散系数.结果表明甲烷水合物中水分子之间形成强大的氢键网络将甲烷包围并挤压,出现明显分相现象,导致压力对甲烷水合物中甲烷和水的局部结构和扩散系数的影响不同,并且甲烷水合物中甲烷的局部结构和扩散系数与纯甲烷体系差异很大.  相似文献   

4.
通过采用分子动力学模拟的计算机模拟方法,研究了水分子在(6,6)碳纳米管中的运动现象,分析了H_2O分子分别在温度为75 K、150 K和300 K下,受限于碳纳米管中的32个SPC/E模型中H_2O分子的O—O的径向分布曲线图.模拟实验得到水分子随着温度的升高,热运动越来越剧烈,有序化程度大大的降低.RDF曲线的最高峰出现在2. 8处,说明在该点出现其他H_2O分子的可能性最大.  相似文献   

5.
采用H artree-Fork,4种DFT(BLYP,B3LYP,M PW 1PW 91,SVWN 5)和M P2方法研究了甲烷水合物结构-I的氢键和范德华能.甲烷分子取HF/6-31G(d,p)优化构型,水分子选用ST 2模型.水分子间的氢键能Ehb(l)和甲烷-水分子间的范德华能EvdW(l)作为正十二面体边长l的函数,用HF/6-31G(d,p)和4种DFT方法做计算,保持水分子和甲烷分子的构型不变,在几个关键点上选用M P2方法做了计算.计算中选用6-31G(d,p)基组,分别用完全平衡校正和不完全校正法进行校正,这两种方法给出了基组重叠误差(BSSE)的上限和下限.DFT/B3LYP方法计算的氧-氧距离RO-O=0.280 nm和碳-氧距离RC-O=0.392 nm最接近于实验值0.282 nm和0.395 nm.所有计算方法(HF,DFT,M P2)都表明,甲烷水合物结构-I是一个由超强氢键(30~36 kJ/m o l)组成的稳定结构,其氢键能远大于水分子二聚体和冰I4晶格中的氢键能((-22.6±2.9)kJ/m o l和(-21.7±0.5)kJ/m o l).这些数据为气体水合物的Lennand-Jones和K ihara势能函数提供了基本参数,可用于气体水合物的分子动力学模拟.  相似文献   

6.
采用平衡态分子动力学方法模拟分子甲烷水合物导热性能,结合声子态密度分析甲烷分子和水分子间的能量耦合过程;探究范德华相互作用对热导率温度相关性的影响。结果表明:热导率随着甲烷分子和水分子间范德华相互作用的增强而增大。相互作用的增强令甲烷分子的振动峰值向高频区域移动,使得甲烷分子与水分子间的振动耦合作用增强,VDOS匹配程度增加,进而增大了甲烷水合物的热导率。高温下的温度相关性归因于弛豫时间声子的出现导致的非弹性散射,低温下主要受到光学声子模式和低频声子的约束影响。模拟的热导率的温度依赖性与实验结果吻合较好。  相似文献   

7.
采用Aspen Plus模拟软件,通过理论假设和模型简化,选取典型甲烷化反应原料气体,进行气体组分对绝热甲烷化反应影响的模拟研究,研究结果表明:绝热甲烷化反应器出口温度随H_2、CO浓度增加而增加,随CH_4、CO_2、N_2和H_2O浓度增加而降低,其中CH_4和H_2O的变化影响较为显著。∑CO+CO_2的总碳转化率随CO、CO2浓度的增加而降低,随H_2浓度增加而快速增加。  相似文献   

8.
不同温度条件和金属离子半径及所带电荷大小形成水分子数目不同的水合物,从其结合水的键型而分为4类:配位水是主要的一大类,可分为H_2O和一个金属离子相配位的离子晶体及H_2O和两个以上金属离子配位形成的链状水合物;氢键水,分为金属水合离子通过氢键水形成的水合物和通过氢键形成的气体水合物;晶体水,它是由分子引力而形成的一些复盐;质子水,它是酸溶液中水合离子的结合情况。  相似文献   

9.
采用Hartree-Fork,4种DFT(BLYP,B3LYP,MPW1PW91,SVWN5)和MP2方法研究了甲烷水合物结构-Ⅰ的氢键和范德华能.甲烷分子取HF/6-31G(d,p)优化构型,水分子选用ST2模型.水分子间的氢键能Ebb(l)和甲烷-水分子间的范德华能Evdw(l)作为正十二面体边长l的函数,用HF/6-31G(d,p)和4种DFT方法做计算,保持水分子和甲烷分子的构型不变,在几个关键点上选用MP2方法做了计算.计算中选用6-31G(d,p)基组,分别用完全平衡校正和不完全校正法进行校正,这两种方法给出了基组重叠误差(BSSE)的上限和下限.DFT/B3LYP方法计算的氧-氧距离Ro-o=0.280 nm和碳-氧距离Rc-o=0.392 nm最接近于实验值0.282 nm和0.395 nm.所有计算方法(HF,DFT,MP2)都表明,甲烷水合物结构-Ⅰ是一个由超强氢键(30~36 kJ/mol)组成的稳定结构,其氢键能远大于水分子二聚体和冰Ⅰ4晶格中的氢键能((-22.6±2.9)kJ/mol和(-21.7±0.5)kJ/mol).这些数据为气体水合物的Lennand-Jones和Kihara势能函数提供了基本参数,可用于气体水合物的分子动力学模拟.  相似文献   

10.
采用密度泛函及含时密度泛函理论(TD-DFT)的B3P86方法,在6-311++g(2df)基组水平上计算2-甲基环己酮(CH_3—C_6H_9O)分子从基态到第1~第8个激发态的激发能、波长和振子强度,并考察非对称有限电场对CH_3—C_6H_9O分子激发态的影响规律.结果表明:CH_3—C_6H_9O分子的S2,S3,S4,S5,S8等激发态激发能随电场强度的增大呈急剧减小趋势,即外电场作用下CH_3—C_6H_9O分子易于激发和离解.  相似文献   

11.
配合物 MgCl_2·6H_2O·2CH_3CON(CH_3) _2(CH_3CON(CH_3) _2简称 DMA)经化学分析和 x-射线结构分析,确定其化学式为[Mg(H_2O)_4(DMA)_2] Cl_2·2H_2O,晶体属单斜晶系,空间群 C_2,晶胞参数:a=1. 6391nm,b=0. 8012nm,c=0. 7374nm,β=91. 28,z=2. 晶体结构是用 Patterson 法和 Fourier 合成法解析的,经全矩阵最小二乘法修正。最后 R 因子降至0. 090. 结果表明,配合物晶体中 Mg~(2+)与四个 H_2O 分子和两个 DMA 分子以八面体方式相连,形成配阳离子[Mg(H_2O)_4(DMA)_2] ~(2+),两个 Cl~-离子和其余的两个 H_2O 分子分别充填于这些配离子之间.本文还对该配合物进行了 IR、TG-DTG 等研究.  相似文献   

12.
本文用CNDO/2几何优化方法研究了氨的水合物的分子结构.通过计算得出NH_3·H_2O分子最稳定时的平衡构型、键长、双原子贡献、各原子的电荷、离解能等结果,证明了氨水合物属于共价性质;NH_3与H_2O之间是以氢键相连;它是以H_3N……H_2O的形式存在,并非以NH_4……OH的形式存在.  相似文献   

13.
消旋丙氨酸鎳四水合物(Ni(CH_3CH(NH_2)COO)_2-4H_2O)晶體結構的研究工作,是本文作者之一(盧嘉錫)在美国加州理工学院研究晶體結構時在L.Pauling教授的直接领导和A.J.Stosick博士的協助下开始的,當時該校Pauling学派正展开氨酸和蛋白质結構化學的系統研究,希望通過這个研究计划能够找出较简单的生命质的內部结构,來了解這些物质中分子内部和分子间作用力,因此一方面直接探討較簡单氨酸(已完成發表的,截至1954年止,計有环二縮弍乙氨酸((NHCH_2CO)_2)、乙氨酸(NH_2CH_2COOH)、消旋丙氨酸(CH_3CH(NH_2)COOH)、β-乙氨醯乙氢酸(NH_2CH_2CONHCH_2COOH)、乙醯乙氨酸(CH_3CONHCH_2COOH)、左旋3-羟基2丁氨酸(CH_3CH(OH)CH(NH_2)COOH、羟基左旋氮伍圈氨酸(C_4H_9N(OH)COOH)、  相似文献   

14.
采用量子化学计算方法,对甲烷水合物基本空腔(H2O)20缺失水分子后形成的(H2O)19 和(H2O)18 笼型结构特征及其甲烷水合物的稳定性等进行了深入探讨。结果表明,只有相邻且同面的两个水分子缺失,甲烷才有溢出笼型的可能,笼型结构中O—O边长的变化主要源于氢键键长的改变,O—H共价键键长以及H—O—H 键角的变化很小;同类结构异构体的稳定性主要由水分子间的结合能决定,非同类异构体的稳定性主要取决于相邻五元环的个数,而相邻四元环数目的增加将降低其稳定性。  相似文献   

15.
为了制取氢和合成气,烃类的催化反应动力学,到目前为止,研究得还是很不够的。在常压下,使用由氧化铬活化过的镍催化剂(以2—3毫米的耐火粘土块作为载体),以流动法,对反应速度(CH_4:H_2O=1:1-1:3)进行了研究(温度范围为400~700℃,接触时间为0.008~0.06秒)。对于总的反应,提出下列动力学方程式:ω=K(P_(CH_4)P_(H_2O))/(10P_(H_2) P_(H_2O)) (11—6)式中:ω—反应速度,毫米汞柱/秒K—反应速度常数P_(CH_4),P_(H_2O),P_(H_2)—相应组份的分压,毫米汞柱  相似文献   

16.
水环境下蒙脱石层间CH_4吸附行为的分子模拟研究   总被引:1,自引:0,他引:1  
选取钠蒙脱石作为研究对象,通过分子模拟的方式来研究蒙脱石层间水对CH_4吸附的影响。首先,构建钠蒙脱石层间结构模型,采用分子力学方法对模型进行优化,然后对优化后的结构模型使用巨正则系综蒙特卡罗方法(GCMC)进行吸附模拟,将吸附模拟得到的模型结构进行分子动力学模拟。研究表明,当温度一定时,随着层间水含量的增加,CH_4的吸附量逐渐减小。钠蒙脱石层间水和CH_4存在竞争吸附。H_2O与钠蒙脱石层间结构容易形成氢键,故钠蒙脱石优先吸附H_2O。  相似文献   

17.
本文研究了分子篩的最佳制备条件。当矿化液的碱度和SiO_2/Al_2O_3分别等于200%及2时,並在90℃下晶化4小时,可获得4A分子篩,其組成为Na_2O·Al_2O_3·2SiO_2·nH_2O。作者等用該分子篩测定了其对CH_3OH—H_2O及n—C_3H_7OH—H_2O系統中水的吸附等温綫,並計算了相对浓縮度。吸附数据表明:分子筛对n—C_3H_7OH-H_2O系統中水的吸附能力要大于CH_3OH—H_2O系統。  相似文献   

18.
应用Gaussian 03程序,采用密度泛函(DFT)方法,在B3LYP/6-31G(d,p)水平下研究煤中脂肪族硫醚结构(C_6H_5CH_2SCH_3)吸附O_2分子及氧化反应过程的能量变化,确定分子间氧化反应机制,为预防煤炭自燃奠定理论基础。由计算结果可知,煤中C_6H_5CH_2SCH_3结构物理吸附O_2分子形成复合物Ⅰ,形成过程是一个无势垒的过程,在热力学上是稳定的。煤中C_6H_5CH_2SCH_3结构与O2分子的相互作用距离dS-O为2.582A,经CP校正后的相互作用能为-20.60kJ/mol。分析复合物Ⅰ的电子密度变化,可确定其相互作用为范德华力,属于物理吸附。当复合物Ⅰ吸收足够的能量,将进一步发生化学反应。煤中C_6H_5CH_2SCH_3结构氧化反应共有5条反应路径,Path 4是反应的主反应路径,其产物P_3(C_6H_5CH_2SOH+CH_2O)是反应的主产物。经分析发现:煤中C_6H_5CH_2SCH_3结构易发生初步氧化,仅需12.36kJ/mol的能量,物理吸附一个O2分子释放的能量足以提供,但若要深度氧化将Path 4进行下去,需要再从外界吸收相当于物理吸附5个O_2分子释放的能量。  相似文献   

19.
甲烷水合物具有明显的拉曼光谱特征,但会受到压力和组成的影响,压力主要影响甲烷水合物拉曼峰强度,而组成会影响甲烷水合物的类型以及特征峰的拉曼位移.流体包裹体中甲烷水合物形成时的温度和压力是流体包裹体分析中的重要参数.采用原位拉曼光谱技术对南黄海盆地栖霞组地层石英脉中的天然CH4-H2O体系流体包裹体进行了分析.实验结果表明,利用激光拉曼光谱技术可以获得包裹体中甲烷水合物的拉曼光谱信号.该研究包裹体中的水合物为Ⅰ型甲烷水合物,其形成温度为7.5℃(280.65 K);结合甲烷水合物相平衡关系计算得到包裹体中甲烷生成的压力为5.6 MPa.原位拉曼光谱技术不仅可以准确识别甲烷水合物的类型,而且也可定量获取包裹体中水合物的生成条件.  相似文献   

20.
本文利用基于密度泛函理论的第一性原理赝势平面波方法研究了s-III型水分子笼状结构和s-III型CH4气体水合物笼状结构的晶格常数、体弹模量等基本物性参数,发现在0~2.6 GPa压强范围内两种笼状结构均可以稳定存在,晶胞体积随着压强增大而近似线性减小. s-III型CH4气体水合物中由于CH4分子间的作用力导致甲烷水合物体积发生膨胀,但是体积增大幅度较小且比较均匀,平均增幅在3.97%左右. 最后根据能带结构和电子态密度计算结果发现s-III型CH4气体水合物为绝缘体,不具有导电性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号