首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
采用G2M(CC5)//MPW1PW91/6-311+G(2df,p)方法,研究了HSO和NO偶联及其异构化反应机理,获得了各物种的几何构型和频率数据,并构建了标题反应的势能剖面。结果表明,该反应存在3条不同路径,优势路径为R(NO+HSO)→IM1→TS1→IM2,其表观活化能为42.38 kJ· mol-1。此过程为NO中N原子与HSO中O原子偶合形成中间体IM1,接着IM1中SH基团从O(1)原子迁移到O(2)原子上后反应完成。  相似文献   

2.
以离子液体[HSO3-pmim]+[HSO4]-为催化剂,马来酸酐和甲醇为原料,硫脲为异构化试剂,在微波条件下,通过酯化反应催化合成富马酸二甲酯。通过单因素实验和正交试验考察了马来酸酐与甲醇物质的量比、催化剂用量、微波功率和微波时间对富马酸二甲酯产率的影响。实验结果表明,合成富马酸二甲酯最佳条件为:马来酸酐与甲醇物质的量比为1∶6,催化剂离子液体[HSO3-pmim]+[HSO4]-用量为2.5g,微波功率为400 W,微波时间为7min,富马酸二甲酯的产率可达95.3%。在微波辐射下,催化剂离子液体[HSO3-pmim]+[HSO4]-重复使用7次后活性没有明显降低,富马酸二甲酯产率仍高于90%,表明该催化剂具有较好的反应活性和稳定性。  相似文献   

3.
基于8098单片机的步进电机控制系统   总被引:1,自引:0,他引:1  
给出了利用8098单片机的高速输出单元HSO实现对步进电机的控制原理、硬件、软件设计。该系统与由复杂的电子线路或51系列单片机构成的步进电机控制系统相比,具有速度高、智能化、电路简单、工作可靠等特点。  相似文献   

4.
通过水热法成功地合成了 C x · H SO- 4 石墨插层化合物 ,讨论了氧化剂、插入剂、反应时间、反应温度和原料配比等对插层反应的影响 ,以及热力学对插层反应的影响。与熔盐法相比 ,水热法优点显著 ,不仅反应温度低、操作简单 ,并且不需要抽真空 ,从而开辟了石墨插层化合物新的合成途径。  相似文献   

5.
采用机械合金化制粉/热压烧结制备了Fe3Si-10%Cu复合材料,研究了其在0.4,0.6和0.8 mol·L-1的稀H2SO4中的浸泡腐蚀行为.结果表明,Fe3Si-10%Cu复合材料在稀H2SO4中表现出腐蚀失重,且随H2SO4浓度增加材料的腐蚀速率降低;复合材料中Fe3Si和Cu两相在H2SO4溶液中形成了一个腐蚀电池,其中Fe3Si相为阳极,发生腐蚀,Cu为阴极,得到保护;电化学腐蚀测试表明,Fe3Si-10%Cu复合材料在0.4,0.6和0.8mol·L-1的H2SO4溶液中自腐蚀电位相当,且在0.4 mol·L-1溶液中具有最低的自腐蚀电流和维钝电流.在0.6和0.8 mol·L-1的H2SO4溶液中,阳极反应产物以SiO2形态附着在Fe3Si-10%Cu材料表面导致腐蚀速率下降.  相似文献   

6.
利用紫外可见吸收光谱手段考察了2-氯-1,3-二苯并噁唑啉环己烯(化合物1)与F-,Cl-,Br-I,-,CH3COO-,HSO4-,H2PO4-等阴离子的作用.结果表明,该化合物对HSO4-具有选择性识别能力,可实现裸眼识别,有望成为HSO4-识别探针.  相似文献   

7.
合成了一种苯并噻唑衍生物荧光探针BDT,在中性水体系中,探针BDT与HSO3-发生迈克尔加成反应,破坏了探针分子的π-共轭体系,阻断了分子内电荷转移(ICT)过程,引起溶液颜色及荧光发射波长的显著改变,从而可实现在水体系中比色/比率检测HSO3-。探针BDT对HSO3-表现出高选择性、高灵敏度,检出限为2.86×10-7mol·L-1。实验结果表明,探针BDT能够用于白糖和白酒中一定浓度范围内HSO3-的检测及对HeLa细胞中外源及内源性HSO3-的荧光成像。  相似文献   

8.
以4-氯-7-硝基苯并呋咱(NBD-Cl)和咪唑-4-甲醛为原料,设计合成了一种用于检测亚硫酸氢根离子(HSO3-)的荧光探针,并通过核磁共振氢谱(1H-NMR)、质谱(MS)对其结构进行了表征.荧光测试结果表明:在二甲基亚砜(DMSO)水溶液中,该化合物能够对HSO3-表现出荧光增强响应,而相同条件下该化合物对其他阴离子几乎没有类似的荧光识别现象,因此该荧光化合物对HSO3-具有专一荧光识别作用,是一种有效的HSO3-荧光探针.  相似文献   

9.
制备了具有酸性功能的离子液体[Hnmp]HSO4,并用其催化菜籽油酯交换制备生物柴油.该离子液体表现出良好的催化活性及稳定性.在醇油比为8∶1、反应温度(100±2)℃、反应时间5h和[Hnmp]HSO4的用量为菜籽油质量的8%时,生物柴油收率可达85.4%.并且该离子液体有较好的稳定性,循环使用4次后仍有较高的催化性能.  相似文献   

10.
以微晶纤维素为原料,利用1-丁基-3甲基咪唑硫酸氢盐([BMIM]HSO4)与乙醇二元溶剂体系在180 oC下进行催化降解制备得到纤维素固体残渣(SRE),并考察了[BMIM]HSO4质量浓度对SRE结构特征和热解过程的影响规律,为SRE的资源化利用提供理论基础。通过FTIR、Raman、XRD、SEM和激光粒度分析仪对样品进行结构表征,结果表明SRE保持了纤维素化学结构,但随着[BMIM]HSO4质量浓度的增加,SRE粒径显著降低,晶体结构不断被破环并转化为热不稳定的无定形结构。通过热重分析仪和管式反应器研究SRE的热解行为规律,结果表明:随着[BMIM]HSO4质量浓度的增加,SRE热失重起始温度显著降低,热失重曲线向低温区移动。同时,随[BMIM]HSO4浓度的增加,促进了可挥发分与残渣的气固作用,引起焦炭和气体产率增加,生物油产率降低;生物油成分中D-Allose的产率随[BMIM]HSO4浓度的增加大幅降低,而左旋葡萄糖酮和5-羟甲基糠醛、糠醛等含量升高,即[BMIM]HSO4浓度的增加有利于SRE转化生产糠醛等小分子生物质基平台化合物。  相似文献   

11.
经典的Biginelli反应用HCl作催化剂,通常产率较低(20%~50%).以[BPy][HSO4]离子液体为催化剂考察了Biginelli反应在不同温度和溶剂下的反应特点,合成了一系列3,4-二氢嘧啶-2-酮,产率70.7%~92.1%.该方法操作简单方便,产率、纯度较经典的Biginelli反应有较大的提高和改善,具有一定实用价值.  相似文献   

12.
Japan started the national project “COURSE 50” for CO2 reduction in the 2000s. This project aimed to establish novel technologies to reduce CO2 emissions with partially utilization of hydrogen in blast furnace-based ironmaking by 30% by around 2030 and use it for practical applications by 2050. The idea is that instead of coke, hydrogen is used as the reducing agent, leading to lower fossil fuel consumption in the process. It has been reported that the reduction behavior of hematite, magnetite, calcium ferrite, and slag in the sinter is different, and it is also considerably influenced by the sinter morphology. This study aimed to investigate the reduction behavior of sinters in hydrogen enriched blast furnace with different mineral morphologies in CO–CO2–H2 mixed gas. As an experimental sample, two sinter samples with significantly different hematite and magnetite ratios were prepared to compare their reduction behaviors. The reduction of wustite to iron was carried out at 1000, 900, and 800°C in a CO–CO2–H2 atmosphere for the mineral morphology-controlled sinter, and the following findings were obtained. The reduction rate of smaller amount of FeO led to faster increase of the reduction rate curve at the initial stage of reduction. Macro-observations of reduced samples showed that the reaction proceeded from the outer periphery of the sample toward the inside, and a reaction interface was observed where reduced iron and wustite coexisted. Micro-observations revealed three layers, namely, wustite single phase in the center zone of the sample, iron single phase in the outer periphery zone of the sample, and iron oxide-derived wustite FeO and iron, or calcium ferrite-derived wustite 'FeO' and iron in the reaction interface zone. A two-interface unreacted core model was successfully applied for the kinetic analysis of the reduction reaction, and obtained temperature dependent expressions of the chemical reaction coefficients from each mineral phases.  相似文献   

13.
《矿物冶金与材料学报》2021,28(12):1940-1948
The evolution of inclusions and the formation of acicular ferrite (AF) in Ca–Ti treated steel was systematically investigated after Mg and La addition. The inclusions in the molten steel were Ca–Al–O, Ca–Al–Mg–O, and La–Mg–Ca–Al–O after Ca, Mg, and La addition, respectively. The type of oxide inclusion in the final quenched samples was the same as that in the molten steel. However, unlike those in molten steel, the inclusions were Ca–Al–Ti–O + MnS, Ca–Mg–Al–Ti–O + MnS, and La–Ca–Mg–Al–Ti–O + MnS in Mg-free, Mg-containing, and La-containing samples, respectively. The inclusions distributed dispersedly in the La-containing sample. In addition, the average size of the inclusions in the La-containing sample was the smallest, while the number density of inclusions was the highest. The size of effective inclusions (nucleus of AF formation) was mainly in the range of 1–3 μm. In addition, the content of ferrite side plates (FSP) decreased, while the percentage of AF increased by 16.2% due to the increase in the number of effective inclusions in the La-containing sample in this study.  相似文献   

14.
Continuous-drive rotary friction welding was performed to join cylindrical specimens of carbon steel (EN24) and nickel-based superalloy (IN718), and the microstructures of three distinct weld zones—the weld interface (WI)/thermo-mechanically affected zone (TMAZ), the heat-affected zone (HAZ), and the base metal—were examined. The joint was observed to be free of defects but featured uneven flash formation. Electron backscatter diffraction (EBSD) analysis showed substantial changes in high-angle grain boundaries, low-angle grain boundaries, and twin boundaries in the TMAZ and HAZ. Moreover, significant refinement in grain size (2–5 μm) was observed at the WI/TMAZ with reference to the base metal. The possible causes of these are discussed. The microhardness profile across the welded joint shows variation in hardness. The changes in hardness are ascribed to grain refinement, phase transformation, and the dissolution of strengthening precipitates. The tensile test results reveal that a joint efficiency of 100% can be achieved using this method.  相似文献   

15.
《矿物冶金与材料学报》2020,27(11):1489-1498
The specific distribution characteristics of inclusions along with the sliver defect were analyzed in detail to explain the formation mechanism of the sliver defect on the automobile exposed panel surface. A quantitative electrolysis method was used to compare and evaluate the three-dimensional morphology, size, composition, quantity, and distribution of inclusions in the defect and non-defect zone of automobile exposed panel. The Al2O3 inclusions were observed to be aggregated or chain-like shape along with the sliver defect of about 3–10 μm. The aggregation sections of the Al2O3 inclusions are distributed discretely along the rolling direction, with a spacing of 3–7 mm, a length of 6–7 mm, and a width of about 3 mm. The inclusion area part is 0.04%–0.16% with an average value of 0.08%, the inclusion number density is 40 mm?2 and the inclusion average spacing is 25.13 μm. The inclusion spacing is approximately 40–160 μm, with an average value of 68.76 μm in chain-like inclusion parts. The average area fraction and number density of inclusions in the non-defect region were reduced to about 0.002% and 1–2 mm?2, respectively, with the inclusion spacing of 400 μm and the size of Al2O3 being 1–3 μm.  相似文献   

16.
The co-oxidation of As(III) and Fe(II) in acidic solutions by pressured oxygen was studied under an oxygen pressure between 0.5 and 2.0 MPa at a temperature of 150°C. It was confirmed that without Fe(II) ions, As(III) ions in the solutions are virtually non-oxidizable by pressured oxygen even at a temperature as high as 200°C and an oxygen pressure up to 2.0 MPa. Fe(II) ions in the solutions did have a catalysis effect on the oxidation of As(III), possibly attributable to the production of such strong oxidants as hydroxyl free radicals (OH·) and Fe(IV) in the oxidation process of Fe(II). The effects of such factors as the initial molar ratio of Fe(II)/As(III), initial pH value of the solution, oxygen pressure, and the addition of radical scavengers on the oxidation efficiencies of As(III) and Fe(II) were studied. It was found that the oxidation of As(III) was limited in the co-oxidation process due to the accumulation of the As(III) oxidation product, As(V), in the solutions.  相似文献   

17.
18.
19.
Natural magnetite formed by the isomorphism substitutions of transition metals, including Fe, Ti, Co, etc., was activated by mechanical grinding followed by H2 reduction. The temperature-programmed reduction of hydrogen (H2-TPR) and temperature-programmed surface reaction of carbon dioxide (CO2-TPSR) were carried out to investigate the processes of oxygen loss and CO2 reduction. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS). The results showed that the stability of spinel phases and oxygen-deficient degree significantly increased after natural magnetite was mechanically milled and reduced in H2 atmosphere. Meanwhile, the activity and selectivity of CO2 reduction into carbon were enhanced. The deposited carbon on the activated natural magnetite was confirmed as amorphous. The amount of carbon after CO2 reduction at 300°C for 90 min over the activated natural magnetite was 2.87wt% higher than that over the natural magnetite.  相似文献   

20.
The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery; it can alleviate the environmental pressure caused by slag stocking. The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method. Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed. The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号