首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用多弧离子镀沉积了TiN单层薄膜和Ti/TiN多层膜,利用XRD、SEM对样品的物相结构和截面形貌进行表征,使用原子力显微镜、纳米硬度仪对其力学性能进行分析,同时采用摩擦试验机对其摩擦学性能进行了综合评价.结果表明:Ti/TiN多层膜组织结构致密,力学性能优良,相比于TiN单层薄膜,摩擦系数下降,磨损率降低了一个数量级,具有良好的减摩耐磨性.  相似文献   

2.
采用直流反应磁控溅射方法在304不锈钢表面沉积TiN薄膜.利用场发射扫描电镜、X射线衍射仪和纳米压痕仪研究基体温度对TiN薄膜结构与性能的影响.结果表明:TiN薄膜为柱状结构,表面平整、致密.薄膜为面心立方结构(fcc)TiN并存在择优取向,室温和150℃时薄膜为(111)晶面择优取向,300和450℃时薄膜为(200)晶面择优取向;室温时薄膜厚度仅为0.63μm,加温到150℃后膜厚增加到1μm左右,但继续加温对膜厚影响不明显;平均晶粒尺寸随着基体温度的升高略有上升;薄膜的硬度、弹性模量和韧性(H3/E*2)随基体温度的升高而增加,最值分别达到25.4,289.4和0.1744GPa.  相似文献   

3.
中频非平衡磁控溅射制备Ti-N-C膜   总被引:2,自引:0,他引:2  
采用霍尔离子源辅助中频非平衡磁控溅射技术,通过改变工作气氛、偏压模式、溅射电流以及辅助离子束电流,在不锈钢材料基体上制备了Ti/TiN/Ti(C,N)硬质耐磨损膜层.对薄膜的颜色、晶体结构、膜基结合力等性能进行了检测分析.结果表明:膜层的颜色对工作气氛非常敏感,反应溅射中工作气氛的微小变化会引起表面膜层颜色很大的变化.在正常的反应气体进气量范围内和较小的基体偏压下,薄膜的晶体结构没有明显的择优取向.但是反应气体的过量通入会使薄膜的晶体结构出现晶面择优取向趋势.非平衡磁控溅射成膜技术对薄膜晶体结构的择优取向影响并不是很大.在镀膜过程中施加霍尔电流,可以有效地增加膜基结合力.  相似文献   

4.
采用磁控溅射技术在炮钢基材表面制备不同Ti靶电流的TiAlN膜层。利用激光共聚焦、X射线衍射仪、扫描电镜、纳米压痕仪、多功能材料表面性能测试仪、蔡司显微镜等检测方法,研究不同Al/Ti对TiAlN膜层的粗糙度,相结构、纳米硬度、摩擦性能的影响。结果表明:磁控溅射沉积TiAlN膜层光滑致密,无大液滴,以TiN(200)、(220)为主相择优生长。Al/Ti比值为1.32时,薄膜硬度处于峰值区,纳米硬度最高可达19GPa。Al/Ti比值为0.87时硬度略微降低,但表面粗糙度最小为0.029μm,摩擦系数保持稳定最低为0.4723左右。Al/Ti比值为0.87时,表现出较好的抗磨损性能。  相似文献   

5.
利用多弧离子镀的方法,分别在不同弧电流和沉积时间下,在不锈钢基体上沉积TiN-Cu复合膜;对薄膜表面形貌、截面形貌、相组成和硬度进行表征.结果表明,复合膜中的Cu含量、沉积条件对薄膜微观结构和硬度有重要的影响.金属Cu的加入,阻止了TiN柱状晶的生长,改变了纯TiN薄膜的择优取向.当沉积时间为2h,脉冲负偏压为200V时,Cu含量为12.96at%,复合膜硬度达到最大值为2976HV.  相似文献   

6.
研究铜基预处理工艺过程中不同除油温度和酸洗时间对Ni-P-PTFE复合涂层的微观结构和力学性能的影响.首先对H70黄铜进行不同工艺的预处理,然后在基体上先镀Ni-P层,最后化学镀Ni-P-PTFE复合涂层.通过控制预处理过程中除油温度和酸洗时间,利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、纳米压痕仪和HSR-2M摩擦磨损试验机对涂层的微观结构和力学性能进行表征和测试.结果表明:不同除油温度和酸洗时间对Ni-P-PTFE复合涂层的微观组织、涂层硬度和摩擦因数均有较大的影响.当除油温度为70℃、酸洗时间为4 min时,可在基材上得到润滑性和硬度等综合性能优良的Ni-P-PTFE复合涂层,涂层硬度达到5.16 GPa,摩擦因数为0.135.  相似文献   

7.
应用直流磁控反应溅射技术在不锈钢基体上制备Al2O3薄膜,研究了溅射气压、氧气流量和基体温度对Al2O3薄膜的沉积速率和膜基结合力的影响规律。结果表明,随着压力的增大,沉积速率和膜基结合力先增大后减小,在压力为1.0 Pa时最大;随着氧气流量的增加,沉积速率和膜基结合力也随之不断减小;随着温度的升高,沉积速率和膜基结合力略有下降。利用扫描电子显微镜观察了薄膜与基体界面及薄膜的表面微观形貌,薄膜与基体的结合性好,薄膜表面晶粒大小均匀,组织致密。  相似文献   

8.
利用反应磁控溅射方法在(100)单晶硅和高速钢(W18Cr4V)基片上制备出不同B含量的Ti--B--N纳米复合薄膜.使用X射线衍射(XRD)和高分辨透射电镜(HRTEM)研究了Ti--B--N纳米复合薄膜的组织结构,并用纳米压痕仪测试了它们的纳米硬度和弹性模量.结果表明:通过改变TiB2靶功率和Ti靶功率的方法可制备出非晶--纳米晶复合结构的Ti--B--N薄膜;Ti--B--N薄膜中主要含有TiN纳米晶,随着B含量的增加,形成的TiN纳米晶尺寸变小,非晶成分增加;当B含量很高时会出现很小的TiB2纳米晶,此时薄膜性能不好;当TiN晶粒尺寸为5 nm左右时,Ti--B--N薄膜力学性能最优,纳米硬度和弹性模量分别达到32.7 GPa和350.3 GPa.  相似文献   

9.
利用射频磁控溅射技术,使用TiN化合物靶,以不锈钢为基底在不同负偏压下沉积TiN薄膜,并通过共溅射获得掺Ag的Ag-TiN复合膜.分别利用XRD、纳米压痕仪、扫描电子显微镜(SEM)和光学接触角测量仪等对样品的晶体结构、硬度、微观形貌和水接触角进行测试.结果表明:在较低负偏压下获得的薄膜为Ti_2N,表现为四方相;在较高负偏压下沉积的薄膜为立方相TiN,呈现(111)择优取向,薄膜表面呈三角棱椎形貌,薄膜硬度明显提高;Ag-TiN复合膜中的Ag元素以单质多晶的形式存在.当偏压为-130V时,TiN薄膜(111)衍射峰十分强烈,此时硬度和弹性模量最高,分别达到36.0GPa和426.937GPa.偏压为-100V时,TiN薄膜接触角最低,表现为疏水性,与TiN薄膜相比,Ag-TiN复合膜的水接触角降低明显,掺杂Ag后的Ag-TiN复合膜转变为亲水性.  相似文献   

10.
采用平行板电容耦合射频辉光放电化学气相沉积(RF-PECVD)装置,在镀有TiN/Ti过渡层的碳钢表面制备类金刚石膜(DLC),以及直接在基材表面制备掺氮的类金刚石膜,研究成膜内应力减小机理.通过对成膜表面的傅里叶变换红外光谱(FTIR)、激光Raman光谱、X射线光电子能谱(XPS)的测试,分析成膜表面的组分和微观结构对薄膜的性能影响.以薄膜表面摩擦因数的大小,初步评估试样的耐磨程度,研究α-C:H及α-C:H(N)薄膜的摩擦学性能与其结构的关系.  相似文献   

11.
利用射频等离子体增强化学气相沉积(rf PECVD)工艺在不锈钢基底上制备a-C:H膜,利用激光Raman光谱表征所沉积碳膜的微观结构,特别是通过对拉曼谱图进行洛伦兹分解来评价所沉积碳膜的sp3含量,分析了沉积电压和过渡层对a-C:H膜生长过程及膜中sp3含量的影响.结果表明,利用拉曼光谱的洛伦兹分解能够有效分析a-C:H的结构特性,碳膜沉积过程中沉积电压和过渡层对a-C:H膜的生长均具有重要影响.在本实验条件下,以Ti/TiN/TiC为过渡层沉积电压为2500 V时所制备的a-C:H膜中的sp3含量最高.  相似文献   

12.
直流磁控溅射Ti-Si-N 超硬纳米复合膜的结构与力学性能   总被引:1,自引:0,他引:1  
采用Ti-Si复合靶在321不锈钢基体上用直流磁控反应溅射方法制得超硬纳米复合Ti-Si-N膜层,并借助能谱仪(EDX)、X射线衍射(XRD)、X光电子谱(XPS)、原子力显微镜(AFM)、纳米压入仪和划痕仪对膜层的成分、结构和力学性能进行了分析.结果表明:随着膜层中Si含量的增加,Ti-Si-N膜的硬度逐渐升高,当a(Si)=11.2%时达到峰值42 GPa;随着Si含量的进一步增长,膜层硬度开始下降.XRD和XPS结果显示,最硬的Ti-Si-N膜层包含大小约为8 nm的TiN纳米晶以及包围在其周围的非晶态Si3N4.XRD结果显示,随着Si的引入,膜层中TiN晶粒的择优取向由纯TiN膜层中的(111)变为Ti-Si-N膜层中的(200).划痕实验也显示了Si的添加对膜层结合力的影响.最后对该纳米复合膜的强化机制进行了探讨.  相似文献   

13.
为提高钢材料的耐磨性,以Ti、TiN和Ni60A三种粉末作为涂层材料,采用氩弧熔覆、原位合成技术,在Q235钢表面制备TiN复合涂层.利用扫描电镜(SEM)、X射线衍射仪(XRD)、显微硬度计及滑动磨损实验机(MMS-2B)对复合涂层的显微组织结构、硬度和耐磨性进行分析.结果表明:涂层主要由TiN和α-Fe组成,TiN分布均匀且与基体呈现冶金结合,涂层显微硬度最高达738.17 GPa,耐磨性为Q235钢的8倍.涂层在室温干滑动摩擦磨损条件下表现出优异的耐磨损性能,具有应用价值.  相似文献   

14.
采用高功率脉冲磁控溅射法在Si和高速钢基底上制备类石墨(Graphite-like carbon,GLC)非晶碳膜,研究了基底偏压对薄膜微观结构、机械性能和摩擦学性能的影响.结果表明:随着基底偏压的增大,GLC薄膜sp2键含量先减小后增大,在基底偏压为-100 V时达到最小值;薄膜的硬度和弹性模量先增大后减小,表面粗糙度先减小后增大;GLC薄膜的摩擦学性能与其机械性能和表面粗糙度密切相关,在基底偏压为-100 V时,薄膜的平均摩擦系数最小.  相似文献   

15.
择优取向为(111)的TiN涂层,沉积表面光滑、硬度高、耐磨性好、结合强度高、耐腐性能强,因此,被用于矫形外科及骨植入材料.银离子有很好的抗菌性,所以生长含银的TiN膜可将这些优良的机械和生物性能相结合.本文研究银离子注入不锈钢及以不锈钢为基底的TiN膜的微观结构对其抗菌机理的影响.XRD分析的结果表明Ag 注入没有影响TiN(111)择尤取向.银在不锈钢和TiN膜上的晶面择优取向为(200),(111).这有可能是银注入这两种材料不同抗菌性的原因.  相似文献   

16.
偏压对电弧镀TiN薄膜结构和机械性能的影响   总被引:1,自引:0,他引:1  
采用SA-6T电弧离子镀设备在抛光后的W18Cr4V高速钢表面沉积TiN薄膜,在其他参数不变的情况下,考察偏压对薄膜结构和机械性能的影响.通过扫描电镜观察了TiN薄膜的表面形貌,采用X射线衍射仪对结构进行物相分析,利用XP-2台阶仪测试了薄膜的厚度,并用纳米压痕仪和多功能表面测试仪分别对薄膜的硬度和膜基结合力进行测量.结果表明:随着负偏压的增加,具有面心立方结构的TiN薄膜沿(111)密排面的择优生长明显加强;薄膜厚度(沉积速率)呈现先增大后减小的趋势,在负偏压为100V时达到最大;薄膜综合力学性能在负偏压为200V时达到最佳.  相似文献   

17.
采用多层膜模拟的方法研究了Ti-Si-N纳米晶复合膜中Si3N4界面相的存在方式,以探讨纳米晶复合膜的超硬机制。研究结果表明:Si3N4层厚对TiN/Si3N4多层膜的微结构和力学性能有重要影响。当Si3N4层厚小于0.7nm时,因TiN晶体的“模板效应”,原为非晶态的Si3N4晶化,并反过来促进TiN的晶体生长,从而使多层膜呈现TiN层和Si3N4层择优取向的共格外延生长。相应地,多层膜产生硬度和弹性模量升高的超硬效应,最高硬度和弹性模量分别为34.0GPa和352GPa.当层厚大于1.3nm后,Si3N4呈现非晶态,多层膜中TiN晶体的生长受到Si3N4非晶层的阻碍而形成纳米晶,薄膜的硬度和弹性模量亦随之下降。由此可得,Ti-Si-N纳米晶复合膜的强化与多层膜中2层不同模量调制层共格外延生长产生的超硬效应相同。  相似文献   

18.
在室温、无润滑的条件下,利用销盘式摩擦磨损实验考察了SiC与不锈钢(1Cr18Ni9Ti)组成摩擦副的摩擦磨损特性,SiC在5 N和20 N载荷作用下磨损机制为脆性分层磨损.SiC随载荷增加摩擦系数减少,但磨损率随载荷增加而增加.结果表明,SiC与不锈钢对磨时,磨损率达10-4mm3/(N.m)-1数量级,属磨损剧烈,不适合组成摩擦副.  相似文献   

19.
通过磁控溅射的方法,使用石墨靶、V靶复合拼接靶,以氩气作为辅助气体,成功制备了不同原子分数的V掺杂类金刚石薄膜。采用拉曼光谱仪、电子探针X射线显微分析仪、X射线光电子能谱仪、原子力显微镜、扫描电子显微镜、纳米压痕仪、薄膜应力仪、往复摩擦磨损试验机等设备研究了V掺杂对类金刚石薄膜微观结构、力学性能、摩擦学性能的影响。结果表明,V掺杂提高了类金刚石薄膜的力学性能,当薄膜中V的原子分数为54.28%时,薄膜的硬度和弹性模量分别为14.1 GPa和147.6 GPa。掺杂V后,薄膜中生成了V2O5,降低了薄膜的耐磨性能。这主要是因为V促进了sp3杂化C数量的增加,并且在摩擦过程中,薄膜中的sp3杂化C的数量进一步增加,导致其硬度升高,耐磨性能下降。  相似文献   

20.
Si含量和基片温度对Ti-Si-N纳米复合薄膜的影响   总被引:8,自引:1,他引:8  
通过多靶磁控反应溅射方法沉积了Ti-Si-N系纳米复合薄膜。采用电子能谱仪(EDS)、X-射线衍射(SRD)、透射电子显微镜(TEM)、X-射线光电子能谱(XPS)和显微硬度仪分析Ti-Si-N系薄膜的微观结构和力学性能,以及基片温度对薄膜微结构和硬度的影响。结果表明,薄膜中的Si以非晶Si3N4形式抑制TiN晶粒的生长,使之形成纳米晶甚至非晶;薄膜硬度在a(Si)=4.14%时达到最大值(36GPa),继续增加Si的含量,薄膜硬度逐渐降低。基片温度的提高减弱了Si3N4对TiN晶粒长大的抑制作用,因而高的沉积温度使薄膜呈现出硬度峰值略低和硬度降幅减缓的特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号