首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
High-quality type-Ib tower-shape diamond single crystals were synthesized in cubic anvil high pressure apparatus (SPD-6×1200) at 5.4 GPa and 1250-1450°C. The (100) face of seed crystal was used as the growth face, and FeNiMnCo alloy was used as the solvent/catalyst. Two kinds of carbon diffusing fields (type-B and type-G) were simulated by finite element method (FEM). Using the two kinds of carbon diffusing fields, many diamond single crystals were synthesized. The effects of carbon diffusing fields on the ...  相似文献   

2.
High quality type-Ib tower-shape gem-diamond crystals in carats grade were synthesized in cubic anvil high pressure apparatus (SPD-6×1200) at 5.4 GPa and 1250-1450°C. The relationship between the growth time and the weight of growth diamond has been gained. The faces of {110} and {113} were found in the synthetic diamond crystals frequently. We found that the relative growth rate of {113} face was descending with the increase of growth temperature, and that of {110} face had no obvious change with the incre...  相似文献   

3.
Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.  相似文献   

4.
利用中子径迹和离子探针方法,对硼皮金刚石聚晶和含硼黑金刚石聚晶中硼原子的微观结构进行了观察,验证了硼原子分布模型;并利用热重-差热分析方法,对其耐热性进行了分析,解释了硼皮金刚石聚晶的抗氧化性能及化学惰性优异的原因。  相似文献   

5.
利用高温高压合成的立方氮化硼单晶材料,采用恒浓度高温扩散方法制备n型立方氮化硼半导体材料。通过化学气相沉积方法在n型立方氮化硼上外延生长p型金刚石薄膜。在此基础上,通过欧姆接触电极的制作,制备出金刚石薄膜/立方氮化硼异质pn结,并给出pn结的伏安特性曲线。  相似文献   

6.
Diamond crystals with low nitrogen concentration were synthesized from the Fe-Ni-C system with Ti additive at high pressure and high temperature (HPHT) in a china-type cubic high pressure apparatus (CHPA). The synthesis pressure range was 4.8-5.2 GPa, and the temperature range was 1420-1600 K. The lowest synthesis pressure for diamond fell first and then rose with the increase of Ti additive. The color, shape, surface morphology and nitrogen impurity concentration of the synthesized diamond crystals were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and micro Fourier transform infrared (FTIR) spectrometry. The results show that the Ti additive has significant effects on color, growth rate, crystal shape, surface morphology and nitrogen impurity con- centration of the synthesized diamond crystals. The color of diamond crystals synthesized without Ti additive is yellow, while that with Ti additive becomes light and nearly colorless. The growth rate without Ti additive is higher than that with Ti additive. The crystal shapes of as-grown diamond crystals vary with the increase of Ti additive. The {111} crystal faces become dominant and some {311} crystal faces appear with the increase of Ti additive. The concentration of nitrogen impurity in diamond crystals without Ti additive is higher than that with Ti additive.  相似文献   

7.
利用热丝化学气相沉积技术,在多孔钛膜上生长重掺硼金刚石薄膜,研究了碳源浓度对复合膜表面形貌及薄膜质量的影响.结果表明钛膜表面沉积的掺硼金刚石薄膜因碳源浓度的不同而不同,掺硼金刚石薄膜的质量随碳源浓度的减小而提高.金刚石/钛复合膜因碳源浓度的不同会产生复杂的变化,在重掺杂高碳源浓度下金刚石生长抑制碳化钛的形成.  相似文献   

8.
主要介绍硼掺杂金刚石膜的生长.采用热灯丝CVD法在硅上制备金刚石薄膜,采用三氧化二硼制备硼掺杂金刚石膜.利用拉曼光谱分析硼掺杂金刚石膜的生长情况.结果表明:硼的掺杂质量分数随生长时间延长而增大;利用SEM观察硼掺杂金刚石膜的表面晶粒变小;利用银浆在掺杂金刚石膜表面制备电极,测试电流随温度升高而变大.  相似文献   

9.
Boron-doped diamond has been synthesized from graphite mixed with different ratio of B4C at high pressure high temperature (HPHT) using laser heated diamond anvil cell. The starting composition was transformed to diamond compound at pressure ∼9 GPa, 2300–2400 K as indicated by the in-situ X-ray diffraction pattern with synchrotron radiation source. Raman spectrum of the recovered specimen from HPHT state confirmed that boron has been doped into diamond lattice.  相似文献   

10.
利用FeNi粉末触媒在六面顶压机上进行工业金刚石单晶的合成与表征. 结果表明: 在Fe-Ni-C体系合成了优质的六面体、 六-八面体及八面体金刚石单晶; 金刚石{111}晶面的生长属于二维层状生长机制; 金刚石中的包裹体主要由FeNi合金组成.  相似文献   

11.
目的寻求一种合成金刚石大单晶的有效方法。方法采用在金刚石单晶上面电镀一层金属镍膜作为触媒,镀有镍膜的金刚石晶种被规则地放在石墨片上预先刻好的洞中,每两个洞之间保持相等的间距,然后与其他石墨片交替组装在高温高压下进行实验合成。结果实验结果表明,在合成压力、温度和时间分别~5.8 GPa、~1 460℃和14 min的条件下,合成后的单晶尺寸约是原晶种的3倍。与传统的合成工艺相比较,合成后的金刚石单晶具有较好的形貌与质量。结论采用电镀晶种法合成对高品级金刚石大单晶的合成具有一定参考意义。  相似文献   

12.
本文利用六种铁基粉末触媒(FeNiNa,n=0,1,2,3,d,5X。代表Fe在触媒中的含量,Xn〉xn-1)在国产六面顶压机上进行了金刚石单晶的合成实验,研究了高温高压条件下(~6GPa,~1600℃),铁基粉末触媒随铁含量的改变,石墨碳—铁基触媒体系合成金刚石条件的变化规律以及金刚石单晶的生长特性,利用穆斯堡尔谱对金刚石中铁元素形成的包裹体进行了检测.结果表明,随着铁基粉末触媒中铁含量的增加,合成金刚石的压力和温度条件逐渐增高,金刚石生长的“V形区”上移,同时得出了铁基粉末触媒适合高温区(110)和(111)面生长以及金刚石中铁元素以FeNi和FeyC形式存在的结论.  相似文献   

13.
In order to ascertain the mechanism of interaction between carbide and metallic catalyst and formation of diamond under high pressure and high temperature, and find a new method to synthesize diamond with special properties, it is necessary to investigate the reaction behavior of different carbides and metallic solvent_catalysts under high pressure and high temperature. A system of Cr-3C-2 powder and Ni 70Mn 25Co 5 alloy in weight ratio of 1∶6 was treated under 6 0 GPa and 1 500℃ for 20, 30 or 60 min respectively. X_ray diffraction of the samples indicated the Cr 3C 2 decomposed partially after high pressure and temperature treatment, and Cr 7C 3, Cr and diamond formed respectively. There was not any trace of graphite in the samples. The result suggested that the separated carbon atoms could form diamond directly without conversion process of graphite into diamond. The observation of SEI, WDX and EDX also showed that diamond crystals were synthesized in the system, which have perfect surfaces and shapes, with the average grain size of about 40 μm. The properties of the crystals are being investigated.  相似文献   

14.
Study on growth of coarse grains of diamond with high quality under HPHT   总被引:1,自引:1,他引:0  
The growth of coarse grains of diamond was observed with graphite as carbon source and Fe80Ni20 alloy powder as catalyst at HPHT in a China-type SPD 6×1670T cubic high-pressure apparatus with highly exact control system. To synthesize coarse grains of diamond crystal with high quality, advanced indirect heat assembly, powder catalyst technology and catalyst with optimal granularity were used. Especially the nucleation of diamond and the growth rate were strictly controlled by the optimized synthesis craft. At last, diamond crystals (about 0.85 mm) in the perfect hex-octahedron shape were successfully synthesized at ~5.4 GPa and ~1360℃ in 60 min. The characteristic of crystal growth with powder catalyst technology under HPHT was discussed. The results and techniques might be useful for production of coarse grains of diamond.  相似文献   

15.
郯城金刚石砂矿属冲积层产状被破坏的阶地砂矿,金刚石产在残余二阶地冲积砂砾层中,金刚石颗粒大,宝石级金刚石较多,是宝石工业的重要原料基地。  相似文献   

16.
The physical properties of lightly doped semiconductors are well described by electronic band-structure calculations and impurity energy levels. Such properties form the basis of present-day semiconductor technology. If the doping concentration n exceeds a critical value n(c), the system passes through an insulator-to-metal transition and exhibits metallic behaviour; this is widely accepted to occur as a consequence of the impurity levels merging to form energy bands. However, the electronic structure of semiconductors doped beyond n(c) have not been explored in detail. Therefore, the recent observation of superconductivity emerging near the insulator-to-metal transition in heavily boron-doped diamond has stimulated a discussion on the fundamental origin of the metallic states responsible for the superconductivity. Two approaches have been adopted for describing this metallic state: the introduction of charge carriers into either the impurity bands or the intrinsic diamond bands. Here we show experimentally that the doping-dependent occupied electronic structures are consistent with the diamond bands, indicating that holes in the diamond bands play an essential part in determining the metallic nature of the heavily boron-doped diamond superconductor. This supports the diamond band approach and related predictions, including the possibility of achieving dopant-induced superconductivity in silicon and germanium. It should also provide a foundation for the possible development of diamond-based devices.  相似文献   

17.
采用化学气相沉积法(CVD)在多孔活性碳基体上制备掺硼金刚石涂层多孔电极。用扫描电子显微镜(SEM)法表征了金刚石膜的表面微观结构,采用循环伏安法和交流阻抗法研究了电极的电化学性质。结果表明,金刚石表面形态为球形,金刚石膜电极具有很宽的电势窗口,在酸性、中性和碱性3种介质中分别为4.4V、4.0V和3.0V。在铁氰化钾电解液中,金刚石膜电极表面在反应过程中始终保持良好的活性,在表面进行的电化学反应具有良好的准可逆性。  相似文献   

18.
The diamond-to-graphite transformation at diamond-stable conditions is studied by temperature gradient method (TGM) under high pressure and high temperature (HPHT), although it is unreasonable from the view of thermodynamic considerations. It is found that, at diamond-stable conditions, for example, at 5.5 GPa and 1550 K, with fine diamond grits as carbon source and NiMnCo alloy as metal solvent assisted, not only large diamond crystals, but metastable regrown graphite crystals would be grown by layer growth mechanism, and the abundance of carbon source in the higher temperature region is indispensable for the presence of metastable regrown graphite crystals. From this transformation, it is concluded that, with metal solvent assisted, although the mechanism of crystal growth could be understood by the macro-mechanism of solubility difference between diamond and graphite in metal solvents, from the point of micro-mechanism, the minimum growth units for diamond or graphite crystals should be at atomic level and unrelated to the kinds of carbon source (diamond or graphite), which could be accumulated free-selectively on the graphite with Sp2Tr or diamond crystals with sp3 bond structure.  相似文献   

19.
Diamond reinforced copper (Cu/diamond) composites were prepared by pressure infiltration for their application in thermal management where both high thermal conductivity and low coefficient of thermal expansion (CTE) are important. They were characterized by the microstructure and thermal properties as a function of boron content, which is used for matrix-alloying to increase the interfacial bonding between the diamond and copper. The obtained composites show high thermal conductivity (>660 W/(m·K)) and low CET (<7.4×10-6 K-1) due to the formation of the B13C2 layer at the diamond-copper interface, which greatly strengthens the interfacial bonding. Thermal property measurements indicate that in the Cu-B/diamond composites, the thermal conductivity and the CTE show a different variation trend as a function of boron content, which is attributed to the thickness and distribution of the interfacial carbide layer. The CTE behavior of the present composites can be well described by Kerner’s model, especially for the composites with 0.5wt% B.  相似文献   

20.
High quality cubic diamond crystals were grown using the temperature gradient method at high pressure and high temperature(HPHT),in a new FeNi alloy as solvent.The crystals were grown at relatively low temperatures suitable for the growth of {100} faces.An increase in the radial growth rate,and inhibition of the axial growth caused the growth of large,high quality cubic diamond single crystals at high growth rates.For example,over 33 h,the radial growth rate was 0.22 mm/h,while the axial growth rate was only 0.08 mm/h;the growth rate by weight was also increased to 7.3 mg/h.The yellow color of our crystal samples was more uniform than samples from Sumitomo Corporation of Japan and Element Six Corp.The Raman FWHW of the 1332 cm 1 peak in our diamond sample was smaller than the Element Six Corp.sample,but larger than that of the Sumitomo Corp.sample.The nitrogen content of our diamond samples was 240 ppm,which was much higher than the Sumitomo and Element Six samples because of the higher growth rate of our diamond samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号