首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为解决杨木活性染料染色废水达标排放的问题,采用Fenton法对杨木活性染料染色废水进行氧化处理。通过正交实验考察了30%H_2O_2投加量、FeSO_4·7H_2O浓度、反应温度、反应时间以及初始pH值对废水COD和色度去除率的影响。结果表明:Fenton氧化处理方法对该废水处理效果显著,优化工艺条件为30%H_2O_2投加量7.5 ml/L、FeSO_4·7H_2O浓度0.9 g/L、pH值2.5、反应温度50℃、反应时间80 min,处理后废水的COD和色度去除率分别达到92.27%和99.99%。Fenton法处理染色废水时对反应初始pH值要求较高,但具有处理时间短、污染物去除率高等优点。  相似文献   

2.
以印染废水为对象进行Fenton与活性炭颗粒复配深度处理试验,考察活性炭颗粒、pH值、FeSO_4·7H_2O和H_2O_2投加量及反应时间对Fenton体系氧化性能的影响.结果表明:活性炭颗粒投加量为25g·L~(-1),pH=4.0,FeSO_4·7H_2O投加量为0.6g·L~(-1),H_2O_2的投加量为3mL·L~(-1),反应30min后色度的去除率达88.1%,COD_(Cr)去除率达67.4%,其浓度可降至50mg/L以下.因此,认为Fenton试剂与活性炭的复配可实现对印染废水的深度处理.  相似文献   

3.
以芬顿试剂、高锰酸钾为氧化剂氧化降解生活污水,通过测定COD、BOD_5变化来比较氧化效果.在单因素实验的基础上,采用正交试验进行研究.芬顿试剂适宜的氧化条件:FeSO_4·7H_2O的投加量为3 mmol/L,pH值为3,H_2O_2与Fe~(2+)的投加比为3:1,反应时间为60 min;高锰酸钾适宜的氧化条件:投加量为0.2mmol/L,pH值为2,反应时间为60 min.研究表明:与高锰酸钾处理的效果相比,采用芬顿试剂,COD去除率可达80%,处理后废水的可生化性大大提高,为进一步的生化处理创造了良好的条件.  相似文献   

4.
为了解决污水处理厂二级出水中有机物、总磷(TP)等污染物的超标问题,采用芬顿氧化-混凝工艺对污水进行深度处理,通过正交试验和单因素试验探讨了该工艺对污水的处理效果。研究表明:在芬顿氧化反应时间为40min,初始pH值为6.0,FeSO_4·7H_2O和H_2O_2投加量(质量浓度)分别为600mg/L和850mg/L,且混凝反应pH值为8.0,阴离子聚丙烯酰胺(APAM)投加量(质量浓度)为3.0mg/L的最优反应条件下,出水化学需氧量(COD)、色度和TP的去除率分别为97.5%,96.7%和99.2%,且均达到《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准。该工艺作为污水深度处理技术,可广泛应用于城镇污水处理厂对难降解污染物的深度处理。  相似文献   

5.
吸附浓缩-芬顿氧化法深度处理印染废水   总被引:2,自引:0,他引:2  
为利用吸附浓缩与芬顿氧化组合工艺处理印染废水二级生化出水,考察了吸附过程中吸附剂用量、吸附时间和pH值等因素的影响,研究了芬顿氧化过程中Fe~(2+)浓度、H_2O_2浓度、加药方式、反应时间、脱附浓缩液pH值、回调剂和反应过程中最高温度等因素的影响。结果表明:当吸附剂投加量为4g·L~(-1)、pH值为7、吸附时间为30min时,吸附效果最佳;吸附浓缩液在Fe~(2+)浓度为0.1mol·L~(-1)、H_2O_2浓度为2mol·L~(-1)、芬顿试剂等分3次投加、反应时间为1h的条件下,芬顿氧化处理效果最好。该组合工艺在实现废水减量化的同时可提高废水的可生化性,因此有望为印染废水深度处理提供一种高效的工艺。  相似文献   

6.
芬顿氧化助凝法预处理高浓度烟草香料废水试验   总被引:1,自引:0,他引:1  
采用芬顿氧化PAM助凝法对高浓度烟草香料废水进行预处理,并通过试验确定该方法的最佳操作条件(包括最佳反应时间、药剂投加顺序及其投加量等).结果表明:(a)芬顿氧化助凝法是高浓度烟草香料废水预处理的有效措施,废水经芬顿试剂氧化、PAM助凝、pH调节后,COD的去除率可达79.6%,出水完全澄清.(b)芬顿氧化助凝法的最佳操作条件为:将FeSO4·7H2O,H2O2分别按照45 g/L,150 mL/L的标准加入废水中反应60 min,再投加PAM助凝反应10 min后,最后用NaOH调节pH至7.  相似文献   

7.
实验采用超声-Fenton法处理甲硝唑废水.通过测定COD值的变化得到处理的效果,通过静态实验研究Fe~(2+)投加量、H_2O_2投加量、pH值和超声反应时间对COD去除率的影响.正交实验结果表明,各因素影响显著性的先后顺序为H_2O_2投加量Fe~(2+)投加量pH值超声反应时间.研究结果表明,对于COD为1 010.5 mg/L的甲硝唑制药废水,在Fe~(2+)的投加量为0.06 mol/L,H_2O_2投加量0.25 mol/L,pH值为3,超声时间为60 min的条件下,COD去除率可达到95%,处理后COD质量浓度为50.5 mg/L,达到国家一级排放标准.说明超声-Fenton法对甲硝唑制药废水有良好的处理效果.  相似文献   

8.
针对阿维菌素、盐霉素废水经厌氧-好氧工艺处理后难以进一步生物降解的特点,采用Fenton氧化法进行深度处理。试验研究探讨了不同pH值、反应时间、H_2O_2投加量以及n(H_2O_2)∶n(Fe2+)对COD去除效果的影响。在pH值为3.0,H_2O_2(体积分数为30%)投加量为1.5mL/L,n(H_2O_2)∶n(Fe~(2+))为5∶1条件下,废水COD质量浓度由224mg/L下降到64.3mg/L,去除率达到71.3%。  相似文献   

9.
实验采用电芬顿法对甘油洗涤废水进行预处理,废水的可生化性明显提高,采用活性污泥法进一步处理电芬顿出水,处理效果较好.结果表明:在初始pH=4,恒定电流0.03A,2.0g/L的Na_2SO_4,0.5g/L的FeSO_4·7H_2O,反应60min的条件下,COD去除率约为55%,较传统芬顿试剂法提高22%.当进水COD浓度为1800mg/L左右时,经过活性污泥法,在溶解氧7.0mg/L左右,反应时间24h,污泥质量浓度4000mg/L左右的条件下,出水COD为120mg/L左右.  相似文献   

10.
米诺环素制药废水难以被常规的生物法氧化降解,用超声波-Fenton组合高级氧化法对其进行处理,进行了单因素和正交实验.以COD值变化为测定指标,在超声波28 k Hz频率、15 min反应时间下,研究了H_2O_2的投加量、超声波功率、Fe~(2+)/H_2O_2物质的量的比和反应初始值pH对处理米诺环素废水效果的影响.结果表明,当H_2O_2的投加量为8 m L/L,超声波功率为300 W,Fe~(2+)∶H_2O_2物质的量的比为1∶20,反应初始pH值为3.0的条件下,COD的去除率达到最大,为86.15%.说明超声波-Fenton氧化法对于这种四环素类难降解抗生素制药废水的降解效果很好.  相似文献   

11.
Fenton试剂氧化法处理焦化废水SBR出水的研究   总被引:1,自引:0,他引:1  
介绍了采用Fenton试剂氧化法对焦化废水经SBR处理后的出水进行了进一步处理,考察了试剂投加量、pH值及静置氧化时间对处理效果的影响。结果表明,当H2O2投加量为1.67mL/L,FeSO4·7H2O投加量为1.67g/L,pH为6.5,静置氧化时间为4h时,Fenton氧化达到最佳处理效果,CODCr从481.152mg/L降至246.758mg/L,去除率为48.72%。  相似文献   

12.
采用混凝法分别联合芬顿(Fenton)和O_3氧化法深度处理焦化废水的生化尾水。通过单因素实验分析,分别研究聚合硫酸铝铁(PAFC)、H_2O_2以及O_3的投加量对化学耗氧量(COD)、总氮(TN)以及苯酚处理效果的影响,并通过紫外-可见光吸收光谱(UV-Vis)分析废水中有机污染物的降解机制。结果表明:当PAFC投加量为2 000 mg/L时,混凝法对COD、TN以及苯酚的去除率分别为10.19%、2.36%以及2.13%;当H_2O_2投加量为0.07%时,Fenton强化混凝法对COD、TN以及苯酚的去除率分别为81.08%、22.49%以及95.84%;当O_3投加量为1 000 mg/L时,O_3强化混凝法对COD、TN以及苯酚的去除率分别达到82.63%、30.29%以及100%,对废水起到了良好的净化效果。  相似文献   

13.
絮凝-芬顿氧化法处理制药污水的研究   总被引:1,自引:0,他引:1  
医药污水COD值高且负荷变化大,含有微生物难降解的成分,是一种难处理的有机污水.经常规工艺处理后,出水有时仍难达标.采用絮凝-芬顿试剂氧化组合工艺法对出水进行处理,通过测定污水的COD变化以评价处理的效果.考察了常温常压下聚合氯化铝、聚丙烯酰胺等絮凝剂对出水预处理的效果,芬顿试剂配比、投加量、pH值等因素对制药污水处理效果的影响,初步发现了其絮凝、氧化规律.经试验确定的最佳工艺条件为:聚合氯化铝量为0.8 mg/L,聚丙烯酰胺的量为6 μg/L,H2O2/Fe2+物质的量的比为3.5∶ 1,FeSO4 *7H2O投加量为1.62 mmol/L,pH=3.0时.处理后COD值从834.4 mg/L降至149.8 mg/L,总去除率可达82.04%.与直接用芬顿试剂氧化相比,絮凝-氧化法具有相同的处理效果,但大大减少了芬顿试剂的使用量,成本节省很多,显示出较大的应用前景.  相似文献   

14.
张燕华  葛建新 《科技信息》2012,(21):242-243
采用Fenton化学氧化法对造纸废水进行深度处理,考察了H2O2和Fe2+浓度、pH、反应时间等因素对COD去除率的影响。在H2O2(3%)投加量为13.33mL/L,FeSO4.7H2O投量为0.9g/L,pH为5,反应15min后静置5min的条件下,初始COD为290mg/L,色度为50倍的造纸生化出水的COD去除率可达到72%。结果表明,Fenton化学氧化法深度处理该废水可以取到很好的效果。  相似文献   

15.
目的研究微波辅助类Fenton体系降解活性艳红X-3B染料废水的处理效果及p H值、催化剂投加量、H_2O_2投加量、微波辐照时间、功率等因素对废水色度和COD去除率的影响.方法制备催化剂,在微波辅助的条件下,控制pH值、H_2O_2投加量、微波功率及辐照时间、催化剂投加量,比对活性艳红X-3B的处理效果.结果初始色度为1 897倍的活性艳红X-3B废水,在催化剂投加质量浓度为10 g/L、初始pH值为3、H_2O_2投加浓度为17.5 mmol/L、微波功率为400 W,辐照时间为8 min的最优条件下,色度去除率最高可以达到99.08%,COD最大去除率达到89.12%.结论微波辅助类Fenton体系能有效处理活性艳红X-3B废水,提高废水的色度去除率和COD去除率,且该类Fenton体系投药量低,适用的pH范围也更广.  相似文献   

16.
采用盐析凝胶法回收废水中的聚乙烯醇(PVA),并对盐析凝胶后废水进行Fenton处理.考察Na2SO4及Na2B4O7·10H2O投加量、pH、温度、反应时间等因素对PVA回收效果的影响,同时研究Fenton氧化过程中H2O2投加量、pH等因素的作用效果.结果表明:盐析凝胶Fenton氧化法可以有效地回收废水中的PVA,并能高效降解废水中的有机物.在室温、pH为4、Na2SO4投加量为15g/L、Na2B4O7·10H2O投加量为 2.5g/L、反应60min的条件下,废水中PVA 回收率可达88.78%;Fenton法进一步处理后的废水中未检出PVA,化学耗氧量(COD)去除率达87.86%.  相似文献   

17.
微波强化Fenton氧化法处理高浓度医药中间体废水   总被引:2,自引:0,他引:2  
采用微波强化Fenton氧化法处理高浓度医药中间体废水,分别考察初始pH、双氧水(30%)投加量、FeSO4·7H2O投加量、微波功率和反应时间等因素对医药中间体废水处理效果的影响.结果表明:在初始pH为4、双氧水投加量为5mL/L、FeSO4·7H2O投加量为3g/L、微波功率为300W、反应7min的条件下,处理500mL医药中间体废水,其化学耗氧量(COD)去除率达89.7%.反应动力学研究表明,微波强化Fenton氧化法处理医药中间体废水符合一级反应动力学模型,反应半衰期为2.60min.  相似文献   

18.
目的研究非均相UV/Fe-Cu-Y/H_2O_2体系对废水中酚的去除效果,确定该体系处理含酚废水的工艺条件.方法蒸馏水加入分析纯的苯酚晶体配制成水样,通过单因素试验分析各反应条件对废水中COD和苯酚去除率的影响,以确定最佳反应条件.结果非均相UV/Fe-Cu-Y/H_2O_2体系处理苯酚废水,H_2O_2(3%)的投加量为1.0 mL/L,催化剂的投加量为0.8g/L,调节pH值为5,最终苯酚的去除率为95%,COD的去除率为90.25%.结论非均相UV/Fe-Cu-Y/H_2O_2体系的氧化效果很大程度上受H_2O_2和催化剂投加量的影响,加入铜离子可以提高去除率.  相似文献   

19.
内电解法联合H2O2处理废水的试验研究   总被引:4,自引:0,他引:4  
将内电解法与H2O2氧化联合起来应用于废水处理,着重考虑了pH值、H2O2用量以及反应时间对COD去除率的影响规律,并比较了H2O2的投加顺序对废水COD去除率的影响差异.结果表明,废水pH=6.81,经内电解柱处理后出水,调节pH=4.0后,投加0.4~0.5mL/L的H2O2,反应1h后,COD去除率可达95.5%,说明内电解配合H2O2处理废水效果更佳.  相似文献   

20.
超声氧化-SBR法处理拟除虫菊酯类农药化工废水   总被引:1,自引:1,他引:0  
采用超声氧化-间歇式活性污泥(sequencing batch reactor activated sludge process,SBR)法处理拟除虫菊酯类农药化工废水,分析了超声氧化工序中不同因素对废水化学需氧量(chemical oxygen demand,COD)去除率的影响以及SBR工序的最佳处理时间.结果表明:当进水COD值为613.5 mg·L-1、超声反应时间为40 min、H2O2(30%)加入量为6 mL·L-1时,超声氧化工序的废水COD去除率最高,达到45.7%;经超声氧化最佳工艺条件预处理的废水进入SBR反应器反应4 h,出水COD值为52.64 mg·L-1,达到GB 8978—1996《污水综合排放标准》中一级标准的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号