首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
图的点可区别无圈边色数的一个上界(英文)   总被引:2,自引:0,他引:2  
图G的一个正常边染色f,若满足:1)G中无2-色圈;2)对于V(G)中的任意两点u和v,有C(u)≠C(v),这里C(u)={f(uw)|uw∈E(G)},则f叫做图G的一个点可区别无圈边染色.图G的点可区别无圈边色数,记为χ′_(vda)(G),是图G的一个点可区别无圈边染色所用色的最小数目.证明了若图G是一个最小度不小于5,且顶点数不超过30Δ~4的图时,χ′_(vda)(G)≤10Δ~2,其中Δ是图G的最大度.  相似文献   

2.
图G的一个点染色称为单射染色,如果任何两个有公共邻点的顶点染不同的颜色.一个图G称为单射k-可选择的,如果对于顶点V(G)的任何一个大小为k的允许颜色列表L,都存在一个单射染色φ,使得对于v∈V(G),有φ(v)∈L(v).使得G为单射k-可选择的最小k,称为G的列表单射染色数,记作χ_i~l(G).设G是最大度为Δ,围长为g的可嵌入到欧拉示性数χ(Σ)≥0的曲面Σ的一个图.证明了若Δ≥7且g≥6,则χ_i~l(G)≤Δ+3.  相似文献   

3.
图的边色数是指对图的边进行染色使得任意两相邻边染不同的颜色所需要的最少的色数.1965年,Vizing证明了任意最大度是Δ的图的边色数或者是Δ或者是Δ 1.若为前者,则称图是第一类的,否则称为第二类的.若G为连通的第二类图,且对G的任意边e,有χ′(G-e)<χ′(G),则称图G为Δ临界图.对于临界图的性质的研究有助于对图的分类问题的研究.本文给出了如下定理:G是一个Δ临界图,x是G中的一个Δ点,如果|N4(x)|=3,那么对u∈N4(x),N≤Δ-1(u)=φ.  相似文献   

4.
研究了圈Cp和完全图Kp的Mycielski′s图的邻强边染色和邻点可区别全染色的问题,得到了如下结果:如果连通图G(V,E)满足a′χs(G)=Δ(G),则χas(Mn(G))=Δ(Mn(G));圈的Mycielski′s图的邻强边色数为5;p阶完全图的Mycielski′s图的邻点可区别全染色为2p.  相似文献   

5.
设σ是一个阶至少为3的简单连通图G的k-正常边染色,其中颜色集合为{0,1,2,…,k-1}.若对任意距离不超过2的两条边e,,存在σ(e)≠σ(),则称σ为G的强边染色.若图G的强边染色σ能够诱导一个G的2-距离点染色,则称σ是G的孪生强边染色.最少的颜色数为G的孪生强边色数,记为■_(s,t)(G).通过研究简单连通图的孪生强边染色,得到了相应的染色数.  相似文献   

6.
如果图G的正常边染色不包含2-色圈,则称它是图G的一个无圈边染色。图G的无圈边色数表示图G的无圈边染色所需的最小颜色数。利用已有的关于平面图的结构性质,证明了不含4圈的2-连通平面图的无圈边色数不超过Δ(G)+11。  相似文献   

7.
图G的正常边染色称为无圈的,如果图G中不含2-色圈。图G的无圈边色数,用a'(G)表示,是使图G存在正常无圈边染色所需要的最少颜色数。证明了如果不含三角形的轮胎图G的最大度为Δ(G),则a'(G)≤Δ(G)+3。  相似文献   

8.
研究了2-外平面图的无圈边染色问题.运用删点变换,得到了2-外平面图的结构性质;继而,运用数学归纳法,得到了图的一个无圈(Δ(G)+3)-边染色,即得到:若G是一个2-外平面图,则a’(G)≤Δ(G)+3.  相似文献   

9.
利用差值转移的方法证明了,如果g(G)≥4则有X′a≤Δ(G)+4.图G=(V,E)是简单图,映射C:E→[k],被称作是图G的一个无圈k边染色.如果任意相邻的两个边染有不同的颜色,以及图G中不含有2-色圈,换句话说即图G中任何染两种颜色的边的导出子图是一棵森林.  相似文献   

10.
设G是有限简单无向图,k是正整数.使G-S每个分支的阶不小于k的边割S称为G的k阶限制边割.G的四阶限制边连通度λ4(G)是G的四阶限制边割之中最少的边数.若对于任意边e∈E(G),均有λ4(G-e)=λ4(G)-1,则称G是极小四阶限制边连通图.定义ξ4(G)=min {(e)(U):U(∪)V(G),G[U]是四阶连通导出子图},此处(e)(U)表示恰好有一个点在U上的边的数目.若λ4(G)=ξ4(G),则称G是λ4最优的.若每个5阶限制边割都孤立出G的一个5阶连通子图,则称G是超级5阶边连通的.笔者给出:极小四阶限制边连通图若不是λ4最优的,则是3正则,围长为5,任意边都关联5圈,且是超级5阶边连通的图.  相似文献   

11.
图的无圈边染色是图的染色理论中的一个重要问题.2001年,Alon等猜想任意简单图G的无圈边色数都不超过Δ(G)+2,其中Δ(G)为图G的最大顶点度.为了深入研究该猜想对平面图是否成立,利用差值转移方法并结合最小反例图的一些结构性质,证明了:不包含三角形的平面图G,如果其最大顶点度不小于6,则其无圈边色数不超过Δ(G)+3.  相似文献   

12.
图G的无圈边着色是指图G的一个正常边着色且不含双色的圈.图G的无圈边色数是指图G的无圈边着色中所用色数的最小者,用x’a(G)表示;证明了如果G是一个D中的顶点不与3-面相关联,3-顶点不与D中的顶点相邻且Δ(G)≥6的平面图,则x’a(G)≤Δ(G)+1。  相似文献   

13.
系列 -平行图是没有子图与K4同胚的图 .设G为一个系列 -平行图 .如果对任意的边e∈E(G) ,有 f(e) ≥max{ 4,Δ(G) } 则G是f 可列表染色的 .同时还确定了所有系列 -平行图的边色数 .  相似文献   

14.
设φ为图G的正常k-边染色。 对任意v∈V(G),令fφ(v)=∑uv∈E(G)φ(uv)。 若对每条边uv∈E(G)都有fφ(u)≠fφ(v),则称φ为图G的k-邻和可区别边染色。 图G存在k-邻和可区别边染色的k的最小值称为G的邻和可区别边色数,记作 χ'Σ(G)。 确定了一类稀疏图的邻和可区别边色数,得到:若图G不含孤立边,Δ≥6且mad(G)≤5/2,则 χ'Σ(G)=Δ当且仅当G不含相邻最大度点。  相似文献   

15.
给G=(V,E)的每个顶点分配一个色列表L={L(v)|v∈V},若G有一个正常顶点染色φ,使得对每个顶点v∈V,都有φ(v)∈L(v),则称G是L可染的。若对G的每一个满足|L(v)|≥k,v∈V的L,G都是L可染的,则称G是k可选择的。本文通过权转移方法证明了每个不含4,6,8,10圈的可平面图是3可选择的。  相似文献   

16.
图G一个正常全染色f被称为无圈全染色,若G中无2-色圈.图G的无圈全色数,标记为χaet'(G),是图G的无圈全染色中所用的最少颜色数.在这篇论文中,证明了若G是一个Δ≥3的图,那么χaet'(G)≤32Δ,这里Δ是G的最大度.  相似文献   

17.
对于最大度是Δ的可平面图G,如果χ′(G)=Δ称G为第一类图,如果χ′(G)=Δ+1称G为第二类图,χ′(G)表示G的边染色数.1965年,Vizing举例说明,最大度是4的平面图中不仅有第一类图,也有第二类图.论文运用Discharge方法及临界图的重要性质证明:最大度是4,不含5圈和6圈,且任意两个相交面的度不相同的可平面图是第一类图.  相似文献   

18.
如果图G的正常边染色不包含2-色圈,则称它是图G的一个无圈边染色。图G的无圈边色数表示图G的无圈边染色所需的最小颜色数。利用差值转移方法并结合平面图的结构性质,证明了不含相交三角形和4圈的平面图的无圈边色数不超过△(G)+6。  相似文献   

19.
设f为简单图G的一个一般全染色(即若干种颜色对图G的全部顶点及边的一个分配),如果任意两个相邻点染以不同颜色且任意两条相邻边染以不同的颜色,则称为图G的Ⅰ-全染色;如果任意两条相邻边染以不同的颜色,则称为图G的Ⅵ-全染色.用C(x)表示在f下点x的颜色以及与x关联的边的色所构成的集合(非多重集).对图G的一个Ⅰ-全染色(分别地,Ⅵ-全染色)f,一旦?u,v∈V(G),u≠v,就有C(u)≠C(v),则f称为图G的点可区别Ⅰ-全染色(或点可区别Ⅵ-全染色),简称为VDIT染色(分别地,VDVIT染色).令χ~Ⅰ_(vt)(G)=min{k|G存在k-VDIT染色},称χ~Ⅰ_(vt)(G)为图G的点可区别Ⅰ-全色数.令χ~Ⅵ_(vt)(G)=min{k|G存在k-VDVIT染色},称χ~Ⅵ_(vt)(G)为图G的点可区别Ⅵ-全色数.利用构造具体染色的方法,讨论了联图mC_3∨nC_3和mC_4∨nC_4的点可区别Ⅰ-全染色和点可区别Ⅵ-全染色,并给出了联图mC_3∨nC_3和mC_4∨nC_4的点可区别Ⅰ-全色数和点可区别Ⅵ-全色数.  相似文献   

20.
若图G为最大度为3且围长不小于11的平面图,证明了它的无圈边色数a′list ( G)=3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号