首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
设R是含幺Noether交换环,I是R的理想,R-模M是弱拉斯克的.本文给出了I相对于M的次的刻画:gradeM(I)=inf{r∈N0|HI^T(M)≠0}.本文的另一主要结论是:设i是非负整数,若i是第一个使得局部上同调模HiI(M)不是有限生成的整数,那么我们证明AssR(H^iI(M))是有限集.  相似文献   

2.
к-弱补模     
作为弱补模的真推广,引入к-弱补模的概念并给出弘弱补模的基本性质.证明к-弱补模的任意直和项是必K-弱模,设M=+i^n=Mi,Mi(i=1,2,…,n)是M的完全不变子模.若Mi(i=1,2,…,n)是K-弱补模,则M是K-弱补模.设R是环.若J(R)=0,则RR是к-弱补模当且仅当R是左PP-环.  相似文献   

3.
设(R,m)是Noether局部环,是交换的且有单位元.若模M满足:(i)Supp(M)包涵于V(a),(ii)Ext^iR(R/a,M)是弱Laskerian的,对所有i≥0,则称M是a-weakly cofin ite的.给出了判定一个模是a-weakly cofinite的条件,并对Ext^iR(R/a,H^ta(M))的弱Laskerian性做了讨论(i=0,1,2时).  相似文献   

4.
K-弱补模     
作为弱补模的真推广,引入K-弱补模的概念并给出K-弱补模的基本性质.证明K-弱补模的任意直和项是K-弱补模.设M=in=1Mi,Mi(i=1,2,…,n)是M的完全不变子模.若Mi(i=1,2,…,n)是K-弱补模,则M是K-弱补模.设R是环.若J(R)=0,则RR是K-弱补模当且仅当R是左PP-环.  相似文献   

5.
令(R,m,k)是Cohen-Macaulay局部环, M,N是有限生成R模. 假设N∈ΩCM(R), 且Ext1≤i≤dR(M,N)=0, 证明HomR(M,N)∈ΩCM(R), 并给出有限生成模N是canonical模的条件.  相似文献   

6.
交换环上的极大性内射模   总被引:3,自引:2,他引:1  
设R是交换环,■表示R的极大理想生成的乘法系,M是R-模.若对R的任何极大理想m,有ExtR1(R/m,M)=0,则M称为极大性内射模.若R自身为极大性内射模,则R称自极大性内射环.若对J∈■,x∈M,由Jx=0能推出x=0,则M称为■-无挠模.证明了在Dedekind整环上,M是极大性内射模当且仅当M是内射模.指出若R的极大理想都是有限生成的,则每个■-无挠模存在极大性内射包络.还证明了若R是■-无挠的自极大性内射模,则自反模是极大性内射模,且非极大素理想都是极大性内射模;若还有R的每个极大理想是有限生成的,则自由模与投射模是极大性内射模.最后,证明了在MFG整环上,平坦模是极大性内射模.  相似文献   

7.
对全不变子模的两个定理:1.设M是右R-模,M=M1 M2,若N≤SMR,那么N=N1 N2,其中Ni=N∩Mi≤S(Mi)R,i=1,2;2.设M是右R-模,M=M1 M2,若F1≤S(M1)R,那么存在F2≤S(M2)R,使得F1 F2≤SMR.进行推广,则为:1'.设M是右R-模,M= i∈ΛMi,若N≤SMR,那么N= i∈ΛNi,其中Ni=N∩Mi≤S(Mi)R,i∈Λ;2'.设M是右R-模,M= i∈ΛMi,若F1≤S(M1)R,那么存在Fi≤S(Mi)R,i∈Λ-{1},使得 i∈ΛFi≤SMR.  相似文献   

8.
设R是有单位元的交换环,M是R-模,如果对M的任意子模N,存在R的理想I,使得N=I·M,则称M是乘法R-模,本文主要结论是:设M=Rx_1+…+Rx_(?),其中x_i=(a_(1i),a_(2i),…,a_(?))∈R~(1×n),i=1,2,…,n,并且sum from i=1 to (?)a_(ii)=1,那么当R是下列环之一时:(1)整环;(2)半局部环;(3) J(R)=0,有:M是乘法R-模当且仅当F_2(A)=0,其中F_2(A)表示矩阵A=(a_(ij)_(?)中一切2阶子式在R中生成的理想。  相似文献   

9.
设 R 为环,M 为右 R 模,n是一个给定的非负整数.若对任意平坦右R模 N 都有Ext n 1 R (N, M) = 0则称M 为 n-余挠模.若对任意n-余挠右R-模 N都有 Ext1R(M, N) = 0则称M为n-平坦模.本文给出了n-余挠模与n-平坦模的一些性质.  相似文献   

10.
利用w-算子理论,给出了唯一分解整环中GV-理想的等价刻画,证明了在唯一分解整环R中,I=Rα1+…+Rα0∈GV(R),当且仅当N=R(α1,…,αn)是F=R(n)(n≥2)的秩为1的素子模,当且仅当N=R(α1,…,αn)是F=R^(n)(n≥2)的秩为1的极大子模,定义了彬一模中子模的彬一根.作为所得结果的应用,讨论了唯一分解整环中有限生成自由模的循环子模的彬一根.  相似文献   

11.
设n∈N+,r∈N,a1,a2,…,an∈C,令E(r)n=E(r)n(a1,a2,…,an)=Σi1+i2+…+in=r ai11ai22…ainn,其中求和遍历使i1+i2+…+in=r的所有n元非负整数组(i1+i2+…+in).本文用初等方法给出了与有关的几个恒等式和不等式,并给出了一个对称不等式的初等证明.  相似文献   

12.
在右n-凝聚环上研究Gorenstein n-余挠模的相关性质,证明了在右n-凝聚环上Gorenstein n-平坦模的Gorenstein n-余挠包络是Gorenstein n-平坦模,Gorenstein n-余挠模的Gorenstein n-平坦覆盖是Gorenstein n-余挠模;将n-余挠模的相关性质推广到Gorenstein n-余挠模上;在右n-凝聚环上讨论模和环的Gorenstein n-余挠维数的相关性质,给出了右n-凝聚环的左Gorenstein n-余挠整体维数与其他同调维数之间的一些等价刻画.  相似文献   

13.
利用弱c ##-正规子群研究有限群的幂零性,得出以下结论:①设G是群, H ≤G ,若H在G中弱c ##-正规且H ≤M ≤G ,则H在M中弱c ##-正规.②设π为素数集,H是G的π-子群, N为G的正规π′-子群,如果H在G中弱c ##-正规,则HN/N在G/N中弱c ##-正规.③设G的每个素数阶元均为G的弱左Engle元,若2∈π(G),且G的每个4阶循环子群均在G中弱##c -正规,则G是幂零群.④设N〈G , G/N为幂零的,且2∈π(G).若N的每个素数阶元均为G的弱左Engle元,且N的每个4阶循环子群也在G中弱c##-正规,则G是幂零群.  相似文献   

14.
推广了弱对称环的概念,研究了具有弱对称自同态α的环,称为弱对称α-环,讨论弱对称α-环与相关环的关系,研究了弱对称α-环的一些扩张性质。证明了:(1)设α是环R的自同态,则R是α-rigid环当且仅当R是弱对称α-环,且由aRα(a)∈nil(R)可推出a=0,对任何a∈R;(2)设R是半交换环,α是R的自同态,则R是弱对称α-环当且仅当R[ x]是弱α珔-sy环。  相似文献   

15.
给出了同一个矩阵A的若干个多项式的像空间及核子空间的和与交的结构,得出了以下的结果:1)R(f1(A))∩R(f2(A))∩…∩R(fk(A))=R([f1(A),f2(A),…,fk(A)]);2)R(f1(A))+R(f2(A))+…+R(fk(A))=R((f1(A),f2(A),…,fk(A)));3)N(f1(A))∩N(f2(A))∩…∩N(fk(A))=N((f1(A),f2(A),…,fk(A)));4)N(f1(A))+N(f2(A))+…+N(fk(A))=N([f1(A),f2(A),…,fk(A)]).它们推广了蒋永泉、胡付高等的结果.  相似文献   

16.
在文献[1]的基础上,改变-些条件得出G为幂零群的若干充分条件。利用弱C-正规,s-正规与弱左Engle元之间的关系获得了下面几个定理:①G的每个素数阶元均为G的弱左Engle元;如果2∈φ(G),G的每个4阶循环子群均在G中弱C-正规,则G是幂零群。②设N〈3G,G/N幂零,2∈π(G),若N的素数阶元均为G的弱左Engle元,且N的每个4阶循环子群也在G中弱C-正规,则G幂零。③如果G的每个素数阶元x为NG((x))的弱左Engle元,并且〈x〉和G的每个4阶循环子群均在G中弱C-正规,则G是幂零群。④G的每个素数阶元均为G的弱左Engle元;如果2∈π(G),G的每个4阶循环子群均在G中S-正规,则G是幂零群。⑤如果G的每个素数阶元x为NG((x))的弱左Engle元,并且(x)和G的每个4阶循环子群均在G中弱S-正规,则G是幂零群。  相似文献   

17.
研究了全体 FAR-模形成的格 FAR( M)及其子格的结构 ,证得 FAR( M)及其子格为模格 .利用同态理论研究同态模间形成的 FAR-模格的相互关系 ,得到一些重要的同态与同构定理 .最后指出 FAR( M)不是分配格  相似文献   

18.
设R是含幺交换环,X真包含于SpecR,E是R模,M是E的子模,对任意子模N≤E,若满足Supp(M∩N)真包含于X,必有SuppNCX,则称E是M相对于X的本性扩张,记为M△/XE.本文给出相对本性扩张的两个等价条件.若R是Noether环,则M△/XE当且仅当Mp△Ep,Ap∈SpecR—X;若X是饱和素理想集合,则还有等价条件HomeRp(k(p),M)=HomeRp(k(p)Ep),Ap∈SpecR-X此外,本文还给出了相对本性扩张的一些性质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号