首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
该文主要结合实际工程案例,针对钢桁梁杆件工厂加工制作,现场杆件拼装、栓合、焊接,通过滑道横移钢桁梁至线路中心,采用拖拉法进行钢桁梁的架设等做了简单阐述,并提出了施工技术中应该注意的事项及措施.  相似文献   

2.
马鑫 《科技信息》2012,(18):423-423,425
随着国民经济与工业的飞速发展,钢桁梁不断的涌现在各大中城市公路及铁路桥梁中。钢桁梁以具有强度高、跨越能力大、安装速度快、便于维修等优点越来越受到广泛的应用。本文主要介绍了崇贤特大桥64m钢桁梁,在临近既有铁路线又跨越交通繁忙的杭州绕城高速公路高架桥,不封道施工而采取的施工步骤及控制事项,利用仅有条件完成拼装、顶推、落梁等工序。  相似文献   

3.
结合实践介绍了膺架法架设铁路钢桁梁的一般施工工艺流程及施工方法,包括膺架搭设、杆件拼装及顶落梁,提出了若干质量保证措施。  相似文献   

4.
黄小峰 《科学技术与工程》2012,12(19):4833-4838
钢桁架作为主梁,杆件众多,无论是制造还是拼装都不可避免地会产生误差,由于钢桁梁的施工流程多且复杂,很难去消除这些误差,导致误差常常不得不被强制消除。但是采用强制拼装手段会引起结构在恒载下的次内力。通过对杆件误差产生来源和对于误差引起杆件次内力的分析计算方法做了分析。同时通过对矮寨悬索桥钢桁梁杆件的应力监控,得出实际内力和理论计算内力的差别。由此来分析推断结构由于误差产生的次内力。为以后钢桁梁杆件的设计和控制提供参考。  相似文献   

5.
本文以跨径为80m的某海峡公铁两用桥非通航孔引桥双层结合全焊简支钢桁梁为背景,根据钢桁梁实际拼装工艺,采用MIDAS/Civil有限元软件建立空间模型,对比分析了主桁上弦杆在压缩试验过程中的受力情况。并且建立不同工况下的模型,通过对钢桁梁公路纵梁应力数据的分析,得出了在钢桁梁压缩拼接的过程中,不仅要注意钢桁梁纵向拼接的先后顺序,同时要考虑每节间内横向的拼接顺序,以更好的解决主桁与桥面系共同作用对公路横梁的影响。  相似文献   

6.
针对传统桥梁施工控制可视化、自动化程度不高的问题,把虚拟现实仿真技术引入了桥梁施工控制中,探讨了基于MATLAB/Simulink的钢桁梁施工仿真建模问题,提出了虚实结合施工控制技术思想。以某钢桁梁悬臂拼装施工模型为例,介绍了该技术思想的实现过程,研究了基于实测结果的有限元模型修正问题。模型试验表明:在室内实验室条件下,该技术思想理念先进、技术实现基本可行,施工控制效果良好。  相似文献   

7.
刘钺 《科技信息》2010,(7):295-297
钢管混凝土系杆拱桥是一种非常有生命力的桥梁,采用钢管混凝土拱桥设计,充分发挥了钢材与混凝土两种材料的优点,降低了桥面高度,同铁路钢桁梁相比较有明显的成本优势。本文结合郑州黄河公铁两用桥北岸引桥跨黄河大堤钢管混凝土拱桥的施工实例,阐述了拱肋拼装的步骤厦工艺,重点对临时支架、吊装过程、拱肋定位等施工控制要点进行了相应的阐述,供大家参考。  相似文献   

8.
运用ANSYS软件计算分析了双撑杆智能预应力钢桁梁跨中挠度约束范围、杆件应力约束范围、钢桁梁跨度、撑杆数量以及荷载形式5个因素对双撑杆智能预应力钢桁梁承载性能的影响,并将相同约束条件下双撑杆智能预应力钢桁梁与普通预应力钢桁梁的承载性能进行了对比.结果表明:挠度约束范围越小、应力约束范围越宽、钢桁梁跨度越大,则智能预应力钢桁梁与普通预应力钢桁梁的最大约束承载力之比就越大;双撑杆智能预应力钢桁梁的承载性能优于单撑杆智能预应力钢桁梁;智能预应力钢桁梁在逐次增多荷载工况下的承载性能优于移动集中荷载工况下的承载性能.  相似文献   

9.
针对主桁倾角变化对倒梯形钢桁梁气动特性有较大影响的问题,以某公铁两用连续钢桁梁为例,针对不同的主桁倾角,采用计算流体力学(CFD)的方法建立简化的三维分析模型,对钢桁梁节段进行风场模拟,分析不同主桁倾角下的钢桁梁断面静风气动力系数、涡振性能以及流场特性的差异。结果表明:升力系数和力矩系数受主桁倾角变化影响明显,主桁倾角为10°时,钢桁梁的升力系数较优,此时钢桁梁承受较小的竖向风荷载;主桁倾角为0°时,钢桁梁的力矩系数较优,此时钢桁梁承受较小的扭转风荷载;主桁倾角对钢桁梁在0°和6°风攻角条件下的涡激性能影响明显,涡振性能在主桁倾角为2.5°和5°时较优;随着主桁倾角的增大,钢桁梁内部风速存在的减速现象减弱,有利于内部行车稳定;主桁倾角的变化对湍动能的分布影响明显,随着主桁倾角的增大,钢桁梁内部湍动能的增大效果减弱,而钢桁梁背风侧湍动能的增大效果加强;通过综合对比多类气动特性,主桁倾角为5°的钢桁梁的气动特性较优。研究得出了主桁倾角变化对倒梯形钢桁梁主梁气动特性和空间流场特性的影响规律,可为后续钢桁梁的抗风设计提供参考。  相似文献   

10.
黄小峰 《科学技术与工程》2012,12(20):5095-5100
悬索桥施工过程中,钢桁梁线形随主缆的大位移不断变化;同时伴随着钢桁梁受力的增加和结构刚度的增加。钢桁梁杆件应力在这些因素的影响下,往往施工过程应力要比成桥状态应力大许多。同样不同的施工顺序和方法在施工过程中对钢桁梁杆件应力的影响也是不同的。通过对矮寨悬索桥钢桁梁新施工方法过程中杆件应力监控来分析钢桁梁杆件应力在施工过程中的变化规律。并和坝陵河大桥施工过程中钢桁梁杆件应力进行比较分析。为新施工方法完善和积累经验奠定基础,也为以后钢桁梁杆件的设计和施工方案的选择提供参考。  相似文献   

11.
为了研究钢桁腹式混凝土组合箱梁的挠度计算方法和影响其挠度变化的因素,将钢桁腹杆换算为具有等效厚度的换算钢腹板,对悬臂板纵向位移函数进行修正,再利用变分法原理推导综合考虑腹杆剪切变形和剪力滞效应的挠度计算公式.运用有限元软件ANSYS建立组合箱梁的有限元模型,对有限元数值计算值和理论计算值进行比较分析,并在此基础上研究高跨比和腹杆水平倾角对组合箱梁由腹杆剪切变形和剪力滞效应产生的附加挠度的影响.研究结果表明:对组合箱梁悬臂板纵向位移函数进行修正可提高挠度计算精度;对于处于合理高跨比的组合箱梁而言,其腹杆的剪切变形和剪力滞效应产生的附加挠度不可忽略;组合箱梁腹杆水平倾角仅会对腹杆剪切变形引起的附加挠度产生影响.  相似文献   

12.
结合具体工程,介绍了空间钢桁架三机整体抬吊施工方法,其中包括空间钢桁架的制作与组装、吊装前的准备工作以及桁架的吊装。  相似文献   

13.
北盘江大桥悬索桥钢桁加劲梁施工技术   总被引:1,自引:0,他引:1  
北盘江大桥为主跨636 m单跨双铰钢桁加劲梁悬索桥.介绍北盘江大桥钢桁加劲梁拼装、架设施工技术.  相似文献   

14.
湛江海湾大桥主桥是一主跨为480m的双塔空间双索面混合梁斜拉桥,钢主梁采用扁平空腹流线型钢箱梁,标准梁段横隔板和纵隔板均为桁架式.在悬臂拼装施工过程中,吊机作用梁段与被吊梁段受力不同,在两段梁的接口处存在较大的变形差异.文中采用混合单元建立被吊梁段与吊机作用梁段的三维有限元模型,分析了悬臂拼装阶段钢箱梁拼接口的相对变形,研究了纵横隔桁架刚度等参数对变形的影响.分析表明,大跨度斜拉桥采用全空腹钢箱是可行的,相对变形的大小取决于箱梁的整体刚度和吊机的横向着力点.  相似文献   

15.
南京大胜关长江大桥是京沪高速铁路上一座六跨连续铁路钢桁梁(拱)桥,采用混凝土与钢正交异性板相结合的整体桥面,多横梁体系,钢正交异性板与下弦杆焊连在一起。本文主要研究了该桥边孔84+84m三主桁连续钢桁梁桥正交异性整体钢桥面板的受力情况。利用空间有限单元法,对桥面系部分构件的受力情况进行了分析。计算结果表明:该桥的整体桥面结构满足高速行车要求;桥面系各构件受力合理。  相似文献   

16.
客货共线1-156m简支钢桁结构分析   总被引:1,自引:0,他引:1  
简支钢桁梁桥因其受力明确、结构高度低、自重轻以及施工周期短等优点,在铁路桥梁中得到了越来越广泛的采用。黄韩侯铁路单线1-156 m栓焊下承式简支钢桁梁是目前国内最大跨度的简支钢桁梁结构。该桥主桁采用无竖杆的三角形腹杆体系,主桁弦杆均采用箱形截面;腹杆采用箱形截面和H形截面;上、下均采用交叉式平纵联,采用工字型截面。采用MIDAS Civil 2010建立该桥三维有限元模型,计算其主桁杆件内力、应力、疲劳应力幅,及全桥自振周期。  相似文献   

17.
大跨度钢梁的上拱度设置   总被引:1,自引:0,他引:1  
针对大跨度明桥面更换过程中上拱度一般设置方法中存在的误区,提出了正确设置钢板粱和钢桁梁上拱度的方法.  相似文献   

18.
将列车-连续钢桁梁桥视为一个耦合的整体系统,采用桁段有限单元对连续钢桁梁桥进行离散,每节车辆采用具有21个自由度的二系弹簧车辆空间振动模型,列车与连续钢桁梁桥通过轮轨相互作用关系进行动力耦合,应用弹性系统动力学总势能不变值原理,建立列车-连续钢桁梁桥时变系统的整体振动方程;采用直接积分法计算了列车以不同速度通过2座连续钢桁梁桥时的桥上列车振动响应全过程,分析计算所得结果,可以得出2座桥梁行车安全的结论.  相似文献   

19.
合肥新桥机场航站楼钢结构跨度大且复杂,而部分梁为桁架梁且截面为倒三角形截面,需对施工过程进行仿真分析,以保障施工顺利进行.文章应用ETABS软件分析了桁架式刚架中的一拼装桁架段在施工过程中的内力变化情况,提出采用拼装桁架段在地面进行翻转的施工方法使构件受力较小,并被施工方所采纳进而指导施工.  相似文献   

20.
Sutong Bridge is a cable-stayed bridge with a steel box girder and a main span of 1 088 m. The steel box girder of main span includes five portions : back span large unit, large block of pylon, standard girder, back span closure girder and middle span closure girder. Each back span large unit is fabricated by welding several deck segments together in factory, and is erected by floating crane. As navigational clearance of the main bridge is high, the traditional truss lifting device can' t satisfy the requirement of domestic lifting cranes for this kind of lifting height and weight. Hence, a kind of lighter lifting device for the erection of back span large units was accepted for this bridge. In this paper, the design and use of this lifting device is introduced. The upper structure used lifting gantry to install the standard girder segment by cantilever method. Because the bridge' s navigation clearance is high, and the girder segment is wide and heavy, the meteorology and hydrology condition of the bridge district is abominable, and the requirements of long cable girder side pull-in, structure and performance propose high request to the lifting gantry. In this paper, the design and use key point of long cable pull-in angle adjustment device integrate into lifting gantry, is introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号