首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
以豆角为原料,采用超声辅助提取法,用D101型大孔吸附树脂对豆角皂苷粗提物进行纯化.纯化的最佳工艺条件为上样pH值为8,上样量为8倍树脂体积,吸附70 min,依次用蒸馏水、20%乙醇溶液、8倍树脂量的70%乙醇溶液进行洗脱,解析时间为60 min,收集70%乙醇的洗脱液,减压浓缩真空干燥后得到豆角皂苷纯品,质量分数可...  相似文献   

2.
以酱油渣干粉为原料,对大豆异黄酮提取条件和纯化方法进行研究.采用实验室模拟动态逆流提取酱油渣中异黄酮,并通过正交设计对提取条件进行了优化,确定了最佳提取条件为体积分数为80%乙醇、提取前的浸泡时间12 h、料液比1∶10,总异黄酮提取率可达0.35%,粗提物的纯度为2.01%.选取3种极性不同的大孔树脂填装制备柱,并利用中低压色谱对大豆异黄酮样品进行纯化.结果表明,NKA9大孔树脂对总大豆异黄酮的纯化效果最好,在体积分数为60%乙醇洗脱时,产品纯度可达到32%.该方法能在短时间内对大豆异黄酮样品进行大量的纯化,满足大豆异黄酮产品生产的需要.  相似文献   

3.
以灵芝孢子粉为原料,使用体积分数为70%的乙醇为提取剂,采用酶解与超声辅助提取相结合的方法,将不同液固比、超声时间、酶解时间和酶用量设定为4个因素,进行单因素试验并设计响应面试验,以确定最优提取方式及其影响因素.利用大孔树脂层析法对灵芝三萜进行分离纯化,通过优化分离纯化工艺,确定最佳洗脱树脂、洗脱液体积分数、上样液流速以及上样液质量比.采用高效液相色谱法分析灵芝总三萜的组分差异.通过预实验分析,与单一提取法相比,酶+超声辅助提取更高效.采用乙醇为提取剂提取灵芝中三萜类化合物可提高三萜的纯度.最优条件下可实现对三萜含量的快速、精确测定,为灵芝三萜的分离纯化提供理论依据.  相似文献   

4.
研究了超声波辅助提取文冠果种仁中总皂苷的工艺条件,并探讨了大孔树脂分离纯化总皂苷的参数以及文冠果总皂苷的体外抗氧化活性。以乙醇为提取剂,通过单因素和正交实验考察了提取剂浓度、提取温度、料液比、超声功率对总皂苷提取的影响。结果表明:乙醇的体积分数70%、提取温度50℃、料液比1∶20、超声功率140 W时,提取物中总皂苷含量最高,达2.69%。采用XAD-16大孔树脂分离纯化文冠果种仁总皂苷,其最佳条件为:静态吸附与解吸时间分别是12h和4h,洗脱剂乙醇的体积分数70%;上样液密度0.12mg/mL(pH=4),上样流速10mL/min,上样液体积与柱体积比1.5,纯化后的总皂苷浓度有较大提高。以Vc作对照,研究文冠果种仁总皂苷的抗氧化活性,结果表明其还原能力和对羟自由基的清除作用高于Vc,清除DPPH自由基和对O-2自由基的能力比Vc要弱。  相似文献   

5.
以赶黄草为原料,选择单因素和正交试验筛选了赶黄草回流提取和超声提取总黄酮的最佳工艺条件,并对提取出的总黄酮利用聚酰胺树脂进行纯化,筛选出纯化最佳条件.结果显示最佳回流提取条件为:料液比1:15、提取温度60℃、乙醇体积分数60%、提取时间1 h.超声最佳提取条件分别为料液比1:25,提取温度50℃,乙醇体积分数60%,提取时间50 min.聚酰胺树脂的纯化最优条件为:选择60~80目聚酰胺树脂、溶液pH值为4、装柱比例1:15、拌样比例1:3、洗脱溶剂pH值为8、乙醇体积分数为70%,并且乙醇用量需大于3倍量保留体积.通过实验对比和筛选赶黄草黄酮的提取工艺条件和树脂最佳纯化条件,为赶黄草黄酮未来的提取纯化类实验研究提供实验数据参考.  相似文献   

6.
杜仲皮中桃叶珊瑚甙的提取及纯化   总被引:6,自引:0,他引:6  
研究了杜仲皮中桃叶珊瑚甙的提取及纯化工艺,并采用高效液相色谱法测定了桃叶珊瑚甙的含量;分别用8种大孔吸附树脂对提取液进行分离纯化处理,以不同体积分数的乙醇水溶液进行梯度洗脱;在C18反相色谱柱上,以21%甲醇水溶液为流动相,流速为1.0 mL/min,在波长210 nm处,用高效液相色谱法对杜仲提取液中桃叶珊瑚甙的含量进行了测定.研究结果表明: 杜仲皮中桃叶珊瑚甙的最佳提取条件是提取溶剂为72%(体积分数)乙醇水溶液,料液比为1:12, 在65 ℃提取2次,每次60 min, 桃叶珊瑚甙提取率达85%;S-8型树脂对桃叶珊瑚甙的选择性好,吸附量大,用60%乙醇水溶液可将其完全洗脱;经干性炮制后的杜仲皮中桃叶珊瑚甙含量最高可达2.87%.  相似文献   

7.
目的:在细胞水平下,通过抗病毒实验,筛选佩兰最佳提取方法及敏感病毒株,并确定分离纯化效果最佳的大孔吸附树脂型号,为进一步分离非挥发油类抗病毒成分奠定基础.方法:先通过水提法、水提醇沉法、醇提法、醇提水沉法、乙酸乙酯提取法获得粗提物,在细胞水平下,由显微镜观察细胞病变效应(CPE),噻唑蓝(MTT)法染色,酶标仪测定吸光度值,通过比较治疗指数(TI),对肠道EV-71病毒、单纯疱疹Ⅰ型病毒、柯萨奇病毒B5、呼吸道合胞病毒进行体外抗病毒筛选;其次通过大孔吸附树脂分离法,以蒸馏水、体积分数为25%、50%、75%的乙醇作为洗脱剂冲洗树脂柱,筛选分离纯化效果最好的大孔吸附树脂.结果:经初步筛选,水提醇沉法中的沉淀对肠道EV-71病的抑制作用最强,TI为84.631;通过大孔吸附树脂法得,AB-8弱极性大孔吸附树脂对佩兰的分离纯化效果最好,其中体积分数为25%乙醇洗脱部位的T1值可达127.001.结论:体积分数为25%乙醇洗脱部位是佩兰抑制肠道EV-71病毒的最佳有效部位.  相似文献   

8.
以枇杷叶为研究对象,采用大孔吸附树脂对枇杷叶三萜酸的粗提物进行分离纯化。首先对8种大孔树脂进行筛选,然后考察最佳大孔树脂对枇杷叶三萜酸的静态、动态吸附及脱附性能,得到最佳分离纯化的工艺条件:大孔树脂型号为HZ-816,上样流速2 BV/h(1 BV约为32 m L),上样质量浓度0.6 mg/m L,上样体积470 m L,洗脱液乙醇体积分数95%,洗脱流速2 BV/h,洗脱剂的用量为6 BV,由此得到的三萜酸纯度为92.29%。通过比较研究表明大孔树脂分离法优于碱溶酸沉法。  相似文献   

9.
通过正交设计确定银杏叶总黄酮用微波提取的最佳工艺,对溶剂浓度、料液比、提取时间和提取次数4个因素进行考察,确定其对银杏叶总黄酮提取率的影响,最佳提取条件为乙醇浓度60%、料液比1∶70、提取2次、提取时间3min,银杏叶总黄酮得率为2.061%。银杏叶总黄酮进一步采用大孔树脂分离纯化,以黄酮含量为指标确定其最佳工艺参数,选定D101型大孔树脂,以80%乙醇、2倍柱体积/h的流速洗脱、收集乙醇洗脱液至3倍柱体积,为最佳工艺。经D101型大孔树脂纯化后,提取物中黄酮含量由17.08%提高到44.17%。  相似文献   

10.
对酵母海藻糖的提取与纯化工艺进行了研究。在温度80℃、酵母质量浓度70g/L条件下用50%乙醇溶液提取60min,海藻糖提取率可达98.81%;采用大孔阴阳离子交换树脂混合柱纯化提取液,适宜条件为,流速(3~6)mL/min,温度40℃,经浓缩、结晶,海藻糖纯度可达98%以上。  相似文献   

11.
利用大孔树脂分离纯化黑米花色苷,得到最佳纯化条件.在最佳提取条件下得到黑米花色苷粗提液,利用AB-8大孔树脂对其进行纯化,研究各个因素对吸附率和解吸率的影响.静态吸附平衡时间为4 h,吸附液pH值为2.0,解吸时间为1.5 h,60%乙醇洗脱效果最佳.动态吸附上样液质量浓度0.5 mg/mL、流速为1.0 mL/min时吸附效果最好,解吸流速为1.0 mL/min、60%乙醇洗脱剂解吸效果最佳.在最佳纯化工艺条件下纯化后的花色苷质量比提高了大约7倍左右,说明AB-8大孔树脂对黑米花色苷具有较好的分离纯化效果.  相似文献   

12.
对AB-8型大孔树脂分离纯化中药复方免疫增强剂中多糖的工艺条件进行研究,采用苯酚-硫酸法测定大孔树脂对分离纯化多糖的吸附率、解吸率及影响因素。结果显示:最佳工艺条件为上样液药复方多糖的浓度为5.93mg/mL、速率2BV/h、体积2BV,洗脱液乙醇的体积浓度为50%、速率3BV/h、用量3BV。AB-8型大孔树脂的吸附率、解吸率分别达到71.0%、93.1%,所得多糖含量为79.8%,表明AB-8型大孔树脂对中药复方多糖有较好的分离纯化性能。  相似文献   

13.
研究了大孔树脂分离纯化小腊树黄酮的工艺,以及纯化前后对DPPH自由基的清除作用.结果表明:AB-8型树脂是分离纯化黄酮的适宜大孔树脂;AB-8型大孔树脂分离纯化黄酮的最佳工艺条件为:提取物上样量为6BV(以湿树脂体积计),先用水淋洗,再用30%的乙醇洗脱,洗脱剂用量为3.3倍湿树脂体积.纯化后黄酮对DPPH自由基的清除效果要低于纯化前.  相似文献   

14.
竹叶中黄酮提取纯化工艺研究   总被引:12,自引:3,他引:9  
采用正交试验的方法对竹叶中黄酮的乙醇提取条件进行了系统研究,同时采用大孔吸附树脂吸附法对纯化条件进行了研究.结果表明:以30倍体积80%的乙醇水溶液在80℃水浴中浸提3 h为最佳,4种大孔吸附树脂中AB-8树脂为纯化的最适树脂.  相似文献   

15.
为建立黄精皂甙的提取及纯化工艺,首先利用超声波辅助提取皂甙,通过正交试验确定提取的最佳条件,然后利用正丁醇以及大孔树脂等对皂甙进行纯化.结果表明,皂甙超声提取的最佳条件为:乙醇浓度75%、料液比120、每次提取时间50min、重复提取2次,对提取率影响因素大小依次为料液比乙醇浓度提取次数提取时间;纯化皂甙的最佳方法是:先用水饱和正丁醇纯化,再用大孔树脂XAD-4纯化,其纯度可达95.33%.该方法对其他中药材中皂甙的提取纯化也有着重要的参照意义.  相似文献   

16.
沙棘叶中黄酮提取及大孔树脂分离纯化槲皮素   总被引:2,自引:0,他引:2  
采用响应面的方法对热碱水提取沙棘叶中黄酮的条件进行优化,较佳工艺条件为pH值11.4,温度75.5℃,质量浓度28.6 mg/mL,提取2.0h,产率为1.23%.磷酸沉淀后采用大孔树脂进行纯化,比较了3种大孔树脂AB-8、DM301、HPD-100对沙棘黄酮的纯化效果,最终选出较佳大孔树脂为AB-8,且当上样液浓度为1.0 mg/mL、pH值为6.0、吸附1.0h后,树脂的吸附率达到最大值.最后用3倍柱体积蒸馏水洗脱除去杂质,用不同体积分数乙醇溶液(30%,50%,70%,80%,90%)进行梯度洗脱,并将解吸液用高效液相色谱(HPLC)进行检测,结果显示80%和90%乙醇解吸液中槲皮素纯度均可到达97%以上.  相似文献   

17.
为高效提取大蒜素,选用大蒜为原料,乙醇溶液为提取液,采用超声辅助渗漉法进行提取试验。考察了乙醇体积分数、超声时间、乙醇用量三个因素对大蒜素提取率的影响。选用响应面法,基于单因素试验探究的结果,优化大蒜素的提取工艺条件。结果表明:10 g蒜泥在40℃超声酶解30 min后,加入20 mL体积分数为65%的乙醇超声55 min,经165 mL体积分数为65%的乙醇溶液渗漉提取,大蒜素提取效果最佳,得率为0.439 mg/g。  相似文献   

18.
对杜仲中活性成分松脂醇二葡萄糖甙(PinoresinolDiGlucoside,即PDG)提取、纯化工艺进行了研究,并使用高效液相色谱法测定PDG含量.结果表明:杜仲粉用体积分数为60%的乙醇水溶液,60℃,提取2次,每次1h,PDG提取率可达90%以上.分别采用4种大孔树脂对提取液进行分离纯化处理,以不同浓度的乙醇水溶液进行梯度洗脱,发现S型树脂对此种活性成分选择性好、吸附量大,用体积分数为40%的乙醇水溶液洗脱可将其完全解吸附,PDG的收率达45.2%.在C18色谱柱上,以体积分数为26%的甲醇水溶液为流动相,流速为1.0mL/min,在λ=228nm处,对杜仲原料中PDG进行了测定,结果表明炮制后的杜仲皮的PDG质量分数较高,为0.497%.  相似文献   

19.
通过单因素和正交试验探讨桑葚花色苷的最佳提取工艺条件,同时比较了大孔树脂纯化前后桑葚花色苷的抗氧化活性变化情况.结果表明,桑葚花色苷提取最佳条件为:70%甲醇、料液比1∶55(g/m L)、提取时间60 min,该条件下提取率为6. 497%.采用静态吸附的方法,通过6种不同型号大孔吸附树脂吸附和解析效率的比较,确定了NKA-9型大孔树脂为桑葚花色苷的最佳纯化树脂.桑葚花色苷有较强的抗氧化活性,且纯化后的桑葚花色苷抗氧化效果显著提高.  相似文献   

20.
表没食子儿茶素没食子酸酯(EGCG)具有抗癌及抑菌等多种生理活性,是潜在航天功能食品功能因子成分。采用液相色谱的方法测定EGCG含量,应用ADS-7、ADS-8、ADS-17、ADS-21、D101、NKA-II、NKA-9型7种大孔吸附树脂对EGCG进行吸附和解吸纯化实验研究。ADS-7和NKA-II型2种大孔吸附树脂对EGCG有良好的吸附性能和解吸性能,解吸液分别为体积分数60%和70%的乙醇溶液,解吸液体积分别为6BV和5BV,解吸量分别为168.15mg和156.45mg,解吸率分别为88%和92%;应用NKA-II树脂得到的富集物中EGCG的质量分数由44.2%提高到67.9%,得率为90%。对于EGCG,不同型号大孔树脂的吸附和解吸性能存在差异,需要进行筛选和工艺优化;大孔树脂可以实现EGCG的分离纯化,在工业生产应用方面具有潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号