首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
利用上下解方法与Schauder不动点定理,研究了一类非线性分数阶边值问题解的存在性:{D_(0+)~αu(t)=f(t,u(t)),t∈[0,1],u(0)=u(1)=u′(0)=u′(1)=0,其中α∈(3,4],是一实数,D_(0+)~α是Riemann-Liouville分数阶导数,推广和改进了已有的结果.  相似文献   

2.
研究一类Caputo分数阶微分方程边值问题:{D_0~α+u(t)+f(t,u(t))=0,t∈(0,1),u′(0)=u(1)=0,多解的存在性,其中1α≤2,f:[0,+∞)×R→[0,+∞)是连续的,D_(0+)~α是标准的Caputo微分.先将微分方程边值问题转化为积分方程,再转化为积分算子不动点问题,最后利用Leggett-Williams不动点定理得出Caputo分数阶微分方程边值问题至少有3个正解存在,其中格林函数的性质和非线性项的条件至关重要.  相似文献   

3.
本文主要研究一类Riemann-Liouville分数阶微分方程多点边值问题:{D_(0+)~αu(t)+f(t,u(t),u′(t))=0,u(0)=u′(0)=u″(0)=…=u~(n-2)(0)=0,u′(1)=∑m-2i=1β_iu′(ξ_i),其中0≤t≤1,n-1α≤n,n≥2,0β_i1,0ξ_i1,i=1,2,…,m-2。a_i0,∑m-2i=1β_iξ_i~(α-2)1。先利用Schauder不动点定理得到边值问题解的存在性,再由Leggett-Williams不动点定理证明边值问题至少存在3个正解的存在性,所得结论更为丰富,推广了已有文献的结果,最后举例子说明本文结论的正确性。  相似文献   

4.
主要研究了非线性分数阶微分方程边值问题{D_0~α+u(t)=λf(t,u(t),D_0~β+u(t)),0t1;u(0)=u′(0)=u(1)=0解的存在性和唯一性.其中:0λ1,2α≤3,0β≤α-1,f∈C([0,1]×R~2,R),D_0~α+与D_0~β+是标准的Riemann-Liouville微分.利用Schauder不动点定理给出了解的存在性,利用Banach压缩映像原理得到了解的唯一性.  相似文献   

5.
本文研究一类分数阶微分方程的两点边值问题:{D_0~α+u(t)=-f(t,u(t)),0t1,u(0)=u′(0)=u′(1)=0,其中2α≤3是实数,D_0~α+是标准的Riemann-Liouville微分,f:[0,1]×[0,∞)→[0,∞)是连续函数。本文利用Banach压缩映像原理得到解的唯一性,并在较一般的非紧性测度条件下应用凝聚映射的不动点指数得到该边值问题正解的存在性。  相似文献   

6.
为考察一类α∈(3,4]阶微分方程边值问题{Dα0+u(t)+f(t,u(t),u′(t))=0 u(0)=0,u′(0)=0 u″(1)=0,u(1)=g(u(1)) 解的存在性问题,运用Schauder不动点定理,得到了该问题一个解的存在性结果.  相似文献   

7.
研究了一类带有p-Laplacian算子的分数阶微分方程反周期边值问题{(Cφp Dα0+u(t))=f(t,u(t)),t∈[0,T],u(0)=-u(T),u′(0)=-u′(T)解的存在性,其中1α≤2,T0,φp(s)=s p-1s,p1,(φp)-1=φq,p-1+q-1=1,CDα0+为Caputo分数阶微分,f:[0,T]×R→R为连续函数.利用分数阶微分方程和反周期边值条件的特性给出所研究边值问题的Green’s函数,然后借助于Banach压缩映像原理和Krasnosel’skiis不动点定理得到此反周期边值问题解的一些新的存在性理论.作为应用,给出了2个例子验证了所得结果.  相似文献   

8.
本文利用偏序集上的不动点定理,研究了分数阶m点边值问题Dα0+u(t)+f(t,u(t))=0,0相似文献   

9.
一类非线性分数阶微分方程边值问题正解的存在性   总被引:1,自引:0,他引:1  
本文运用Schauder不动点定理和Krasnoselskii’s不动点定理获得了非线性分数阶微分方程边值问题~CD■u(t)=f(t,u(t),u′(t),u″(t)),t∈(0,1),u′(0)+u″(0)=0,u′(1)+u″(1)=0,u(0)=0正解的存在性,其中2α≤3,~CD■是Caputo分数阶导数.  相似文献   

10.
研究了分数阶非线性系统D_(0+)~αu(t)+f(t,u(t),u′(t))=0,t∈(0,1),和边值u(0)=0,D_(0+)~β(1)=aD_(0+)~βu(ξ)的正解存在性问题。并且根据不动点理论得到其正解的存在性定理。  相似文献   

11.
研究奇异三阶m点边值问题:u(t)=f(t,u(t),u′(t),u″(t))+e(t),0t1,u(0)=u′(0)=0,u′(1)=∑m-2i=1αiu′(ξi),C1[0,1]解的存在性。这里函数f:[0,1]×R3→R满足Carath啨odory条件,t(1-t)e(t)∈L1(0,1),αi∈R,ξi∈(0,1),(i=1,2,…,m-2)且0ξ1ξ2…ξm-21是给定常数。主要结果的证明基于Leray-Schauder延拓定理。  相似文献   

12.
利用Schauder不动点定理给出下面非线性分数阶微分方程边值问题D0α+u(t)=f(t,u(t)),0相似文献   

13.
利用和算子的不动点定理,研究了非线性分数阶微分方程边值问题:{-Dα0+u(t)=f(t,u(t)),0t1,2α≤3{u(0)=u′(0)=u′(1)=0的正解,其中Dα0+是标准的Riemann-Liouville分数阶微分,f(t,u(t))=g(t,u(t))+h(t,u(t))和g,h:[0,1]×[0,∞)→[0,∞)都是连续函数且g(t,u),h(t,u)关于u是单调递增。证明了其解存在唯一性,同时构造一迭代序列去逼近它。最后,举例应用了所得结果。  相似文献   

14.
应用不动点定理,建立了奇异非线性三点边值问题的u″ a(t)f(u)=0,αu(0)-βu′(0)=0,0u(<1)t-相似文献   

15.
运用不动点指数理论,作者研究了带参数的分数阶微分方程边值问题{Dα0+u(t)=λf(t,u(t)),00是一个参数,3<α≤4u′(0)=u′(1)=0是一个实数,Dα0+为标准Riemann-Liouville微分算子.  相似文献   

16.
研究一类非线性分数阶微分方程m点边值问题:D_(0+)~αu(t)+h(t)f(t,u(t),D_(0+)~βu(t))=0,0t1,其中,u(0)=u'(0)=…=u~(n-2)(0)=0,D_(0+)~βu(1)=sum from j=1 to m-2 (η_jD_(0+)~βu(ζ_j)).D_(0+)~αu(t)和D_(0+)~βu(t)是标准Riemann-Liouville分数阶导数,α≥2,n-1α≤n,β≥1,α-β≥1,0≤η_j(j=1,2,…,m-2),0ζ_1ζ_2…ζ_(m-2)1,1-sum from j=1 to m-2 (η_jζ_j~(α-β-1)0).利用不动点理论,得到正解的存在性、唯一性和多解性的一些充分条件,最后,通过一些具体的数字例验证了结果.  相似文献   

17.
在以下带有p-Laplacian算子的分数阶微分方程多点边值问题中:{D_0~β+(Φ(D_0~α+u(t)))=λf(u(t)),0t1,2α≤3,1β≤2,u(0)=u'(0)=0,u(1)=■β_iu(ξ_i),Φ(D_0~α+u(0))=(Φ(D_0~α+u(1)))'=0,其中D_0~α+,D_0~β+是Riemann-Liouville分数阶导数,f∶[0,+∞)→[0,+∞)是连续函数,文章的新奇之处在于运用Guo-Krasnoselskii不动点定理来研究了一类含参量的带有p-Laplacian多点边值问题正解的存在性及不存在性.  相似文献   

18.
 为了进一步发展和完善四阶边值问题正解的存在性理论,研究了下面的四阶边值问题{u(4) =f(t,u(t),u′(t),u″(t),u(t)),0≤t≤1 u′(0)=u″(0)=u(0)=0, ku(1)=u(1)其中,f:[0,1]×R4→[0,+∞)连续。利用锥上不动点定理得到了该四阶边值问题正解的存在性及多重性。推广了某些已知的结果。  相似文献   

19.
讨论了一类p-Laplacian算子型泛函微分方程的奇异边值问题(φp(y′(t)))′ h(t)f(yt)=0,y(t)=μ(t),y(0)-g1(y′(0))=0=y(1) g2(y′(1))正解的存在性,其中p(u)=|u|p-2u,p>1.利用锥上的不动点定理,得到了这类边值问题存在一个或者多个正解的充分条件.  相似文献   

20.
应用单调迭代技巧研究了抽象的Banach空间E中一类非线性分数阶微分方程边值问题{-D——0~α+u(t)=f(t,u(t)),t∈I,u(0)=u′(0)=u′(1)=θ解的存在性,其中2α≤3是实数,I=[0,1],Dα0+是标准的Riemann-Liouville导数,f:I×E→E连续,θ为E中的零元.在较弱的单调性条件和非紧性测度条件下,通过构造上下解的单调迭代过程,获得该边值问题最小、最大解对的存在性及解的存在唯一性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号