首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LM环     
引入LM环的概念,并研究了该环的一些性质及LM环与相关环类间的关系.主要证明了如下结果:1)设R为LM环,若a∈R为正则元,则存在b∈R,使得a=ba~2;2)设I是R的约化理想,若R/I为LM环,则R是LM环;3)设I_1,I_2是R的2个理想且R/I_1,R/I_2为LM环,若I_1∩I_2=0,则R是LM环;4)设R为LM环,I是R的理想且I■N(R),则R/I为LM环.  相似文献   

2.
给出左极小Abel环的一些刻画,主要证明了如下结果:1)R为左极小Abel环当且仅当2阶上三角矩阵环T_2(R)为左极小Abel环;2)R为强左极小Abel环当且仅当■a∈R,■e∈ME_l(R),|a∨e|≤3;3)设I为R的约化理想,若R/I为左极小Abel环,则R也为左极小Abel环.  相似文献   

3.
设α是环R的自同态。称环R为右α-可逆环,如果对任意的a,b∈R若ab=0,则bα(a)=0.本文讨论了α-可逆环,α-刚性环,可逆环和弱α-Skew Armendariz环的关系。设R是可逆环和右α-可逆环,证明了:(1)R是弱α-Skew Armendariz环;(2)对任意的正整数n, R[x] /(xn)是弱α-Skew Armendariz环;(3)若αt=1R,则R[x;α]是弱Armendariz环.  相似文献   

4.
WGCN 环     
引入WGCN环的概念,研究WGCN环的一些性质,主要证明了如下结论:1)设R是WGCN环,I是R的理想且I■N(R),则R/I是WGCN环;2)设I是R的约化理想,若R/I是WGCN环,则R是WGCN环;3)设e是R的中心幂等元,若eRe,(1-e)R(1-e)是WGCN环,则R是WGCN环;4)设R是交换约化环,则M_4(R)是WGCN环.  相似文献   

5.
本文在双环的前提下,用任一模都是循环模直和这一模特征,对某类环进行了完全刻划.得到了主要定理:设R是有1的双环.那么下列等价:(α) R上任一左模都是循环模直和;(b) R是左Artin主理想环;(c) R是左Noether环,并且对R的任一理想I,R/I是(左) 自内射环.并且还进一步得到,一个环如果是局部环直和,那么上述(C)成立蕴含着这个环一定是双环.  相似文献   

6.
设α是环R的自同态,如果对任意的a,b∈R,若ab=0,那么存在一个正整数n,使得a~nRα(b)=0,则称自同态α是左GWZI自同态.若环R存在左GWZI自同态,则称环R是α-LGWZI环.文章给出了α-LGWZI环的刻画,探究了α-LGWZI环的相关性质,推广了α-半交换环.  相似文献   

7.
将clean环的定义推广到任意环(不必有1),证明了以下结论:(强)clean环的理想是(强)clean环;若I是R的一个理想,且I蘆(R),则R是clean环当且仅当R/I是clean环,且其幂等元可提升;R是clean环当且仅当R/J(R)是clean环,且其幂等元可提升;左Artin环是clean环;直积ΠRi是(强)clean的当且仅当每个Ri是(强)clean的;若R是clean环,G是阶为2的群,满足一定条件,群环RG也是clean环.还证明了有些上三角矩阵环是clean环,推广了已有的一些结果.  相似文献   

8.
α-GWS环     
设α是环R的自同态,如果对任意的a,b,c∈R,若abc=0,有acα(b)∈N(R),则称R为α-GWS环.文中引入了α-GWS环的概念,并举例说明了α-GWS环是α-对称环的真推广,给出了α-GWS环的基本性质,得到了α-GWS环的一些刻画.  相似文献   

9.
设Specl(R)是环R所有素左理想构成的集合,α(I)={P∈Specl(R)|IP},β(I)=Specl(R)\α(I),Ul(I)=maxl(R)∩α(I),Vl(I)=maxl(R)∩β(I)和ξ=Ul∑in=1,1≤j1≤j2≤…≤ji≤n(-1)i-1ej1ej2…ejiei∈E(R),i=1,2,…,n,n∈Z+.当R是quasi-normal环时,首先研究了ξ中元素的性质,并借助这些性质证明了如下主要结论:①若R是一个quasi-normal的clean环,则R是左tb-环;②设R是一个quasi-normal环,如果R是一个左tb-环,则ξ形成了maxl(R)的一组基.特别地,maxl(R)是一个紧致的Hausdorff空间.  相似文献   

10.
Pomfret·J 和 B·R·Mcdonald 在[1]中用矩阵方法确定了局部环上 GL_n(n≥3)的自同构,该文同时定出了 SL_n (V)的自同构.本文在[1]的基础上证明了 PSL_n(V)的自同构也具有标准形式.设尺是局部环,m 是 R 的极大理想,V 是 R 上的空间,SL_(?)(V)PSL_n(V)分别表示 V 上的特殊线性群与射影特殊线性群(n≥3).定义1 PSL_n(V)中的元素(?)称为射影对合,如果有:(?)=i.若(?)是射影对合,那么σ~2=αI,αI∈RL_n(V)∩SL_n(V),α∈R.称α为(?)的数量  相似文献   

11.
给出了环的半格和及补半格和的弱正则性的刻画,即若环R是其弱正则子环Rα(α∈Г)的半格和,那么R也是弱正则环;若弱正则环R是其子环Rα(α∈Г)的补半格和,则Rα(α∈Г)都是弱正则环.  相似文献   

12.
研究了满足一定条件的P-内射环为WB-环的等价刻画.证明了如果R是非奇异的P-内射环,那么R只要满足条件之一:(a)R满足特殊左零化子的升链条件;(b)R不包含由有限非零主左理想构成的直和项;(c)R是CF环;(d)R是Goldie环.有如下等价:(1)R是WB-环;(2)对任何a∈R,有正交理想I,J,使得a=aua=ava,这里u∈R,模I右可逆,v∈R模J左可逆;(3)对任何a∈R,有正交理想I,J和幂等元e∈R,使得a=eu=ev,这里u∈R模I右可逆,v∈R模J左可逆;(4)如果ab,a,b∈R,则有正交理想I,J,使得au=ub,av=vb,其中u∈R模I右可逆,v∈R模J左可逆.  相似文献   

13.
给出了环的半格和及补半格和的弱正则性的刻画 ,即若环 R是其弱正则子环 Rα(α∈Γ)的半格和 ,那么 R也是弱正则环 ;若弱正则环 R是其子环 Rα(α∈Γ)的补半格和 ,则 Ra(α∈Γ)都是弱正则环 .  相似文献   

14.
设α是环R的自同态。称环R为右α-可逆环,如果对任意的a,b∈R若ab=0,则bα(a)=0.本文讨论了α-可逆环,α-刚性环,可逆环和弱α-Skew Armendariz环的关系。设R是可逆环和右α-可逆环,证明了:(1)R是弱α-Skew Armendariz环;(2)对任意的正整数n, R[x] /(x^n)是弱α-Skew Armendariz环;(3)若αt=1R,则R[x;α]是弱Armendariz环.  相似文献   

15.
给出XLC环的定义,并研究XLC环的一些性质,主要证明了如下结果:1)R是交换约化环当且仅当G3(R)是XLC环;2)若R是XLC环,则R是直接有限环;3)设I_1,I_2是R的理想,R/I_1,R/I_2是XLC环且I_1∩I_2=0,则R/I_1∩I_2是XLC环;4)设R是XLC环,若a∈R是正则元,则a是强正则元.  相似文献   

16.
通过环R上矩阵环M3(R)的特殊子环S3(R)={(α(a) b c 0 β(a) d 0 0 γ(a))|a,b,c,d∈R}给出了一类半交换Armendariz环。利用Reduced环和相容自同态的性质证明了:如果R是Reduced环,α,β,γ是R的相容自同态,那么S3(R)是半交换的Armendariz环。  相似文献   

17.
广义可逆环   总被引:1,自引:0,他引:1  
设R是环,环R的自同态α称为可逆的,如果对任意a,b∈R,若ab=0,则α(b)a=0.环R称为α-可逆环,如果R存在可逆的自同态α.本文将可逆环的结论推广到α-可逆环上,另外证明了斜幂级数环(简单地记为sps环)和Armendariz环的推广α-sps Armendariz环R[[x;α]]的Baer性和右p.p.性.  相似文献   

18.
拟J-clean环     
通过拟幂等元引进拟J-clean环的概念,给出拟J-clean环的若干例子,讨论了它们的基本性质。证明了:(1)若R是拟J-clean环,则全矩阵环Mn(R)是拟J-clean环;(2)一个环R是UJ-环,当且仅当R中的拟clean元都是拟J-clean元;(3)设R是一个交换环,则R是拟J-clean环的充分必要条件是若I是R的包含于J(R)的理想且使得R/I是不可分解环,则R/I=J(R/I)∪U(R/I)。  相似文献   

19.
推广了弱对称环的概念,研究了具有弱对称自同态α的环,称为弱对称α-环,讨论弱对称α-环与相关环的关系,研究了弱对称α-环的一些扩张性质。证明了:(1)设α是环R的自同态,则R是α-rigid环当且仅当R是弱对称α-环,且由aRα(a)∈nil(R)可推出a=0,对任何a∈R;(2)设R是半交换环,α是R的自同态,则R是弱对称α-环当且仅当R[x]是弱珔α-sy环。  相似文献   

20.
对于环R中的一个元素a,如果存在p~2=p∈comm~2(a)使得a+p∈R~(qnil),则称a为qnilpotent的,一个环称为qnilpotent的如果环中每一个元素都是qnilpotent的.文章证明了qnilpotent环是quasipolar的,若一个环R是qnilpotent的,则eRe也是qnilpotent的.同时给出了一些qnilpotent环与其相关的环之间的充分必要条件.证明了若R是一个局部环,则n×n阶上三角矩阵环是qnilpotent当且仅当R是唯一bleached的并且R/J(R)■Z_2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号