首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Auslander—Buchsbaum定理指出,如果R是一个整体维数有限的Noether局部环,M是一个有限生成的非零R一模,那么pdRM CodimRM=g1.dimR.文献[2]证明上述公式对极大理想为有限生成的凝聚环上的有限表现的非零Noether模依然成立.本文试图将Auslander—Buchsbaum公式推广到任意的交换凝聚环上.  相似文献   

2.
设R是交换环,M是R-模,I是R的有限生成理想,满足∩∞n=0In=0,R^是R的I-adic完备化,M^是M的I-adic完备化.证明了若R是凝聚环,则R^是平坦R-模,且若I(∈)J(R),则R^还是忠实平坦R-模.由此证明了若R^(×)RM是有限生成(有限表现或有限生成投射)的R^-模,则M是有限生成(有限表现或有限生成投射)R-模.最后用Swan的方法证明了若R是凝聚整环,u∈J(R)是素元,∩∞n=0(un)=0,M是不可分解的有限生成投射R-模,则M/uM是不可分解的投射R/(u)-模.  相似文献   

3.
设M是有限生成的拟投射左R-模,那么End(RM)为半完全环的充要条件是M能分解成模直和:M=M1…Mr,其中每个End(RMi)为局部环;设R为整环,那么,对于任意有限生成的拟投射但非投射的R-模M,End(RM)为半完全环的充要条件是R的Krull维数为1和R的每个理想都有准素分解;设R为Dedekind整环,M是有限生成的扭R-模,那么End(RM)为半完全环。  相似文献   

4.
交换环上的极大性内射模   总被引:3,自引:2,他引:1  
设R是交换环,■表示R的极大理想生成的乘法系,M是R-模.若对R的任何极大理想m,有ExtR1(R/m,M)=0,则M称为极大性内射模.若R自身为极大性内射模,则R称自极大性内射环.若对J∈■,x∈M,由Jx=0能推出x=0,则M称为■-无挠模.证明了在Dedekind整环上,M是极大性内射模当且仅当M是内射模.指出若R的极大理想都是有限生成的,则每个■-无挠模存在极大性内射包络.还证明了若R是■-无挠的自极大性内射模,则自反模是极大性内射模,且非极大素理想都是极大性内射模;若还有R的每个极大理想是有限生成的,则自由模与投射模是极大性内射模.最后,证明了在MFG整环上,平坦模是极大性内射模.  相似文献   

5.
设A、B是环,M是B-A-双模,称T=(A 0M B)是形式三角矩阵环.设R是任何环,N是R-模,若对R的任意伪凝聚模M,有Ext_R~1(M,N)=0,则称N是PC-内射模.借助有限表现模的性质刻画形式三角矩阵环的凝聚性,证明若M是有限表现右A-模,则T是右凝聚环当且仅当A和B都是右凝聚环.讨论形式三角矩阵环上的模的性质,证明若T是右凝聚环,M是有限表现右A-模,则有右T-模(X,Y)_f是PC-内射模当且仅当X是PC-内射A-模,ker f是PC-内射B-模,且f是满同态.  相似文献   

6.
文献[1]、[2]分别给出了主理想整环上两个有限生成模同构的由不变因子理想刻画的条件和两个体上有限维向量空间的线性变换环同构的条件。本文对基础环不同的情形考虑了前者,并且得到了以其为特款的定理1。关于后者,本文仅就类同构环上的正则模(见定义1、3)进行了讨论,结果由定理2,也就是本文题目所说的同构定理所述。设R是一个环,M是R上的一个左模。于是,对于任意固定的reR,左乘变换γ_L:χ  相似文献   

7.
设R是任何环,L是R-模.若对任何平坦维数有限的模M,有Ext_R~1(M,L)=0,则L称为强余挠模.证明(F_∞,SC)是余挠理论当且仅当l.FFD(R)∞,其中F_∞和SC分别表示平坦维数有限的模类和强余挠模类.还证明若w.gl.dim(R)∞,则强余挠模是内射模.最后证明每一R-模是强余挠模当且仅当R是左完全环,且l.FFD(R)=0.  相似文献   

8.
设R是交换环,M是R-模.引入了模M的w-投射维数w-pd_R(M)和环R的w-弱finitistic维数w-f PD(R).给出w-f PD(R)=0的充分必要条件.证明了若R是w-凝聚环,M是有限表现R-模,则M有w-投射分解…→P_n→P_(n-1)→…→P_1→P_0→M→0,其中P_i是有限型的w-投射模,这里i=0,1,….最后,证明了若R是w-半遗传环,w-f PD(R)#1.  相似文献   

9.
R-模M称为FP-投射模是指对所有的有限表现模N,都有Ext~1_R(M,N)=0.证明每个模是FP-投射模当且仅当每个有限表现模是内射模,也证明当R是左Noether环时,则每个模是FP-投射模当且仅当R是半单环.而当R是左凝聚环时,每个模是FP-投射模当且仅当R是VN-正则环且是左自内射环.然后进一步揭示了FP-投射模的子模的性质,引入了左FP-遗传环的概念.证明R是左FP-遗传环当且仅当每个有限表现模的内射维数至多为1.  相似文献   

10.
设R是MFG整环,S表示R的极大理想生成的乘法系.R-模M称为几乎投射模,是指对任何无挠的ε-模N,Ext1R(M,N)是S-挠模.证明了ε-有限生成模M是几乎投射模当且仅当对R的任何次极大素理想P,MP是自由RP-模.同时证明了ε-有限生成的几乎投射模是ε-有限表现模,ε-有限生成的几乎投射的ε-模一定是自反模.  相似文献   

11.
定理设R为含幺的交换环,S和T是有限生成自由R—模M的两个基,则|S|=|T|。证法1 设S={x_1,x_2,…,x_n},T={y_1,y_2,…,y_m}为R—模M的两个不同基。由于R是含幺交换环,知存在R极大理想m,使k=R/m为域。下边考虑R—模M的子模:而M/mM可视为R—模,但,故M/mM可作为R/m—模。另一方面,S={x_1,x_2,…,x_n}是M的基,可知是R/m—模M/mM的生成元而且是k=R/m线性无关的。  相似文献   

12.
设R为一个环, 称一个右R-模M是有限拟内射的, 如果M的每一有限生成子模到M的同态都可扩张为M的自同态。给出了有限拟内射模的一些特征和性质,并研究了一些有限生成的 有限拟内射模。  相似文献   

13.
设R是有单位元的交换环,R-模M称为w-模,是指对任何满足RHomR(J,R)的有限生成理想J,有HomR(R/J,M)=0与Ext1R(R/J,M)=0.证明了平坦模一定是w-模.  相似文献   

14.
设R是任何环,D是右R-模.若对任何平坦维数有限的左R-模M,有Tor_1~R(D,M)=0,则D称为强无挠模.强无挠模对Gorenstein环的研究发挥了重要的作用.为了对强无挠模作进一步刻画,首先证明(D_∞,F_∞)是Tor-挠理论当且仅当1.FFD(R)∞,其中,D_∞和F_∞分别表示强无挠右R-模类和平坦维数有限的左R-模类.还证明每一右R-模是强无挠模当且仅当1.FFD(R)=0.最后证明若1.FFD(R)∞,则1.FFD(R)=stf.dim(R),其中stf.dim(R)表示环R的(右)整体强无挠维数.  相似文献   

15.
设R是任何环,M是R-模.S是包含在R的中心内的非零因子乘法封闭集,对任意的非零因子u∈S,Ext1R(R/Ru,M)=0,则称M是S-可除模;若对任何S-正则左理想I,Ext1R(R/I,E)=0,则称E是S-正则内射模.环R称为S-Noether环,是指R的S-正则左理想是有限生成的.交换环R称为S-Dedekind环,是指R的任何S-正则理想是可逆理想.讨论S-Noether环的基本性质,并用S-可除模来刻画SDedekind环,证明R是S-Dedekind环当且仅当S-可除模是S-正则内射模.  相似文献   

16.
R=σ∈GRσ是有单位元1的交换的G-分次环(在G不需言明时就称R为分次环),并且引入了分次环上的分次w-模等相关概念.证明了:1)设J是R的有限生成分次理想,则J∈GVgr(R)当且仅当J∈GV(R);2)设M是分次模,σ∈G.若M是分次GV-无挠模(或分次GV-挠模),则M(σ)也是分次GV-无挠模(或分次GV-挠模);3)设M是分次模,且是w-模,N是M的分次子模,则N是分次w-模当且仅当N是w-模.特别地,R中的任何分次w-理想都是w-理想.  相似文献   

17.
极小平坦模     
给出极小平坦模和泛极小内射环的定义.指出一个环R是左泛极小内射环当且仅当每个右R-模是极小平坦模←→R的每个极小有限生成左理想是R的直和项.同时指出,右R-模M是极小平坦模当且仅当M^*=Homz(M,Q/Z)是极小内射左R-模,从而推广了正则环及平坦模的相关结果。  相似文献   

18.
格序模f-张量积函子的正合性与平坦格序模   总被引:1,自引:0,他引:1  
本文证明了如下结果:设M是有单位元可换格序环R上的格序模和l-模同态范畴,F是R上的f-模和l-模同态范畴,M∈M,则F=M(?)()是M 到F 的共变函子,进而是右正合函子.设R 是有单位元的可换全序环,视R 为自身上的格序模,则R 是平坦的.  相似文献   

19.
给出了余Noether环的若干新特征:(1)有限余生成内射模的商是有限余生成的;(2)任一单模内射包的满同态是有限余相关的;(3)M是有限余生成内射模,A≤eM,则M/A是有限余相关模;(4)有限余生成内射模的本质子模是有限余相关的;(5)M是有限余生成模,A≤eM,则M/A是有限余生成模.证明了R是V-环当且仅当对任一单模内射包M,任一模是M—内射的当且仅当对每一有限余生成内射模M及任一单模S,S是M—投射的.最后用有限余生成模、半遗传环、余生成子等刻画了半单环.  相似文献   

20.
设R是环,称左R-模P为FT-投射模,是指对任何有有限投射分解的左R-模M,都有Ext_R~1(P,M)=0.证明R是左自内射环,当且仅当任何左R-模都是FT-投射模.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号