首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
压电电压反馈控制在异形销孔镗削中的应用   总被引:1,自引:1,他引:0  
依据异形销孔加工的现状,采用压电陶瓷驱动的柔性铰链机构实现镗刀的径向微位移.根据活塞异形销孔几何特征和压电陶瓷驱动器控制精度高、刚性好和高频响特点及其具有的传感功能,提出了压电电压反馈的控制系统,并在该系统中引入重复控制和干扰通道的开环前馈控制,从而提高了系统的稳定性和跟踪精度.实验表明,加工精度可达3μm.  相似文献   

2.
超磁致伸缩材料(GMM)是一种新型的功能材料,其磁致伸缩系数与磁场强度、温度、压力等有关。以超磁致伸缩高速响应电磁阀的研究为背景,介绍超磁致伸缩材料特性参数的测量方法,及适用于超磁致伸缩材料特性参数测量的测试装置。  相似文献   

3.
超磁致伸缩材料(GMM)是一种新型的功能材料,其磁致伸缩系数与磁场强度、温度、压力等有关。以超磁致伸缩高速响应电磁阀的研究为背景,介绍超磁致伸缩材料特性参数的测量方法,及适用于超磁致伸缩材料特性参数测量的测试装置。  相似文献   

4.
稀土超磁致伸缩材料优良的特性和广泛的应用前景在国际范围内得到普遍重视,已成为磁致伸缩材科研究的重点。简要介绍了稀土磁致伸缩材料,着重评述稀土超磁致伸缩材料的制备方法、工艺特点和应用。  相似文献   

5.
为了实现超磁致伸缩执行器(GMA)精密的位移控制,需要采取一定温控设施保证超磁致伸缩材料(GMM)工作在特定温度情况下;针对超磁致伸缩材料对温度的敏感性,在GMM智能构件的基础上提出了一种改进的强制水冷温度控制策略;利用单片机控制系统实现了对超磁致伸缩执行器的温度控制,实验结果表明了该控制策略可以保证GMA工作在恒温,验证了策略的有效性;对超磁致伸缩材料微驱动应用具有实际的工程意义。  相似文献   

6.
基于超磁致伸缩材料的工作原理,设计了具有微位移可控特性的驱动器。为了探究驱动器内部磁场设计的合理性以及超磁致伸缩驱动器的磁感应强度与激励电流之间的关系,应用ANSYS有限元分析软件对超磁致伸缩驱动器的内部磁场进行仿真。研究结果表明,超磁致伸缩驱动器磁场设计合理;随着电流的增大,超磁致伸缩材料中的磁感应强度也随之增加并且磁感应强度逐渐趋于饱和。  相似文献   

7.
新型活塞异形销孔加工方法   总被引:2,自引:0,他引:2  
提出一种新型活塞异形销孔数控加工方法,采用一个基于压电陶瓷驱动的柔性铰链放大机构来实现镗刀的径向微位移.分析了放大机构的工作原理,提出了一种查表与实时检测相结合的控制方法.建立了消除压电陶瓷驱动器磁滞特性的数学模型,分析了柔性铰链刚度参数的设计方法及柔性铰链机构的动态特性.  相似文献   

8.
采用超磁致伸缩材料 Terfenol—D 作为换能器中制动元件,将在一定预压应力下处于阶跃段的磁致伸缩棒简化为磁场强度与磁致伸缩应变的单输入单输出的线性系统。以静态试验数据为基础,建立等效的动态磁致伸缩模型,对自行设计的超磁致伸缩大功率换能器进行了试验研究,该装置具有功率大、适用频带宽、峰值尖锐余振小等特点,为实际开发换能器产品提供了设计依据。  相似文献   

9.
超磁致伸缩执行器驱动磁场理论分析与实验研究   总被引:4,自引:0,他引:4  
在分析超磁致伸缩材料的驱动原理和超磁致伸缩执行器结构的基础上,重点对执行器内部的驱动磁场进行了理论分析和实验研究,得出了超磁致伸缩执行器驱动电流与超磁致伸缩棒的驱动磁场之间存在一定的非线性和滞回的结论。并分析了其产生原因,为进一步提高超磁致伸缩搪行器的性能奠定了基础。  相似文献   

10.
超磁致伸缩材料内部磁场与涡流损耗理论分析   总被引:1,自引:0,他引:1  
在对纵向激励磁场中超磁致伸缩材料进行分析的基础上,利用Maxwell's方程建立了用Bessel函数描述的超磁致伸缩材料内部磁场分布函数,由Bessel函数解析方法确立了超磁致伸缩材料内部磁场Kelvin表达式.通过对材料内部磁场分布的定性分析,得出内部磁场具有典型滞回特性.利用磁能理论对材料内部涡流损耗进行了初步理论分析,得出由Kelvin函数表示的材料内部涡流损耗表达式.并对激励频率、电导率、材料半径等因素对涡流损耗的影响进行了初步讨论,为超磁致伸缩材料参数的选取奠定了基础.  相似文献   

11.
詹月林  陈西府 《科技信息》2012,(32):163-164
超磁致伸缩作动器具有推力强、反应快和分辨率高等特点,在精密定位、精密驱动、机器人、微型阀等领域展现了广阔的应用前景本文在介绍超磁致伸缩材料及其应用的基础上,分析了国内外超磁致伸缩作动器的研究动态、应用状况等,并对几类超磁致伸缩作动器的原理、结构进行了阐述,最后提出了超磁致伸缩作动器的四个研究方向。  相似文献   

12.
超磁致伸缩材料及其在微机器人中的应用   总被引:3,自引:0,他引:3  
针对Tb—Dy—Fe系合金,研究了超磁致伸缩材料的磁致伸缩原理、基本性能和主要影响参数,并结合现代微器人的研究和开发,探讨了超磁致伸缩材料的实际应用.  相似文献   

13.
超磁致伸缩超声换能器设计分析   总被引:1,自引:0,他引:1  
基于超磁致伸缩材料设计了一种超声换能器,推导了超声振子的频率方程,并且用ANSYS有限元软件对换能器的关键部件进行了动力学分析,得到了关键部件的模态和谐响应特性,验证了设计方法的可行性.对振动系统进行了静态磁场和谐波磁场分析,结果表明:增加磁回路中导磁材料的磁导率可以增加超磁致伸缩棒的轴向磁场强度和磁场均匀度,但当材料的相对磁导率大于1 000时,轴向磁场强度和磁场均匀度的增加幅度逐渐趋于平衡;在高频激励下,超磁致伸缩棒呈现出了严重的电涡流效应,严重限制了其驱动性能,必须对超磁致伸缩棒进行处理.  相似文献   

14.
考虑温度及预应力的影响,建立了应用于车削加工系统的超磁致伸缩微致动器动力学模型,并讨论了温度及预应力对其振动响应的影响.预应力对磁滞及理想磁化模型的超磁致伸缩微致动器模型输出位移的影响变化趋势相同,都出现"翻转"现象,在激励磁场小幅值范围内,系统的输出位移随着预应力的增加而减小,随着激励幅值的增加而增加;当激励磁场幅值较小时,温度对输出位移的影响较小,但是当激励磁场幅值较大时,输出位移随着温度的升高而明显减小.该结果对如何处理预应力、温度、超磁致伸缩材料的滞回的影响提供了理论依据.  相似文献   

15.
建立了考虑温度变化时的超磁致伸缩微致动器的动态振动微分方程,得到了微致动器振动响应的非共振解析解.在已知磁化强度情况下,讨论了温度和预应力对振动响应的影响,并得到了位移响应随温度变化的系数;解出由于超磁致伸缩材料非线性而产生的亚谐共振解,讨论了温度对共振因子的影响.仿真结果表明,超磁致伸缩材料的磁-力-热耦合非线性对微...  相似文献   

16.
以Maxwell’s方程为基础,结合超磁致伸缩材料压磁方程,建立了考虑介电常数、预压应力等参数的超磁致伸缩材料内部磁场径向分布模型,并对其进行了理论分析和数值仿真.讨论了介电常数、预压应力、激励频率等参数对材料内部磁场分布及滞回特性的影响.结果表明,超磁致伸缩材料径向内部磁场分布具有明显的集肤效应和滞回特性;受电导率与介电常数共同影响,材料的磁场分布出现了双峰现象;沿磁致伸缩材料半径增大方向,外激励磁场与材料内部磁场的滞回特性逐渐减弱,磁场损耗随之降低;随着预压应力的增大,材料内部的集肤效应逐渐减小.  相似文献   

17.
超磁致伸缩材料具有本征磁滞非线性,用于精密定位时具有较大的回程误差,为控制超磁致伸缩驱动器的输出位移精度,需要建立准确的数学模型来描述其磁滞非线性。本文基于经典的Preisach磁滞模型,通过对Preisach磁滞模型的离散化,建立了超磁致伸缩驱动器的Preisach磁滞数学模型,并进行了超磁致伸缩驱动器输出位移实验研究。实验结果表明:模型计算的结果 和实验结果基本吻合,证明所建模型能够较好的反映出实际情况。  相似文献   

18.
超磁致伸缩材料具有本征磁滞非线性,用于精密定位时具有较大的回程误差。为控制超磁致伸缩驱动器的输出位移精度,需要建立准确的数学模型来描述其磁滞非线性。基于经典的Preisach磁滞模型,通过对Preisach磁滞模型的离散化,建立了超磁致伸缩驱动器的Preisach磁滞数学模型;并进行了超磁致伸缩驱动器输出位移实验研究。实验结果表明:模型计算的结果和实验结果基本吻合,证明所建模型能够较好地反映实际情况。  相似文献   

19.
温度是影响超磁致伸缩材料性能的主要原因,而磁滞损耗所产生的热量对材料的性能会造成很大影响。通过理论计算得到超磁致伸缩材料的磁滞损耗,为电流互感器的补偿提供基础,实现装置无磁饱和、精度高、速度快的目标。通过计算分析得到了基于Jiles-Atherton模型和BP-神经网络的磁滞模型参数,再利用四级四阶龙格库塔法进一步求解基于上述已求得参数的Jiles-Atherton磁滞模型,进而画出超磁致伸缩材料的磁滞回线求出对应的磁滞损耗。  相似文献   

20.
黄玲 《甘肃科技》2007,23(8):91-92
超磁致伸缩材料作为一种高科技新功能材料,已被广泛应用于汽车、航空、机器人制造业以及智能结构中。自从研制成功以来,无论在材料组成、制备工艺、磁-机模拟的理论研究方面,还是材料的应用开发方面,一直受到各国高度重视。我国对稀土超磁致伸缩材料的研究相对比较晚,已经远远落后于其它一些发达国家,在整体上,仍然处于起步阶段,在材料的应用开发方面,也仅仅处于可行性研究和试验阶段。因此,对超磁致伸缩材料的研究,无论在理论和实际工程应用方面都具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号