首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 343 毫秒
1.
为了实现超磁致伸缩执行器(GMA)精密的位移控制,需要采取一定温控设施保证超磁致伸缩材料(GMM)工作在特定温度情况下;针对超磁致伸缩材料对温度的敏感性,在GMM智能构件的基础上提出了一种改进的强制水冷温度控制策略;利用单片机控制系统实现了对超磁致伸缩执行器的温度控制,实验结果表明了该控制策略可以保证GMA工作在恒温,验证了策略的有效性;对超磁致伸缩材料微驱动应用具有实际的工程意义。  相似文献   

2.
基于磁致伸缩逆效应原理,以超磁致伸缩棒为敏感元件研究了一种具有高灵敏度的新型超磁致伸缩力传感器,通过集成在结构内部的霍尔传感器测量磁通密度来实现静态力的测量.同时,为了提高传感器的测量灵敏度,提出了一种安装在霍尔传感器周围的不锈钢钢环的特殊结构.给出了超磁致伸缩力传感器的测量原理和设计过程,并通过实验研究确定了偏置磁场、预紧力和超磁致伸缩棒的尺寸等因素对传感器输出特性的影响规律,分别得到了传感器工作的最佳偏置磁场和预紧力,为超磁致伸缩力传感器的深入研究和精确控制提供了一种技术途径.  相似文献   

3.
基于超磁致伸缩材料的工作原理,设计了具有微位移可控特性的驱动器。为了探究驱动器内部磁场设计的合理性以及超磁致伸缩驱动器的磁感应强度与激励电流之间的关系,应用ANSYS有限元分析软件对超磁致伸缩驱动器的内部磁场进行仿真。研究结果表明,超磁致伸缩驱动器磁场设计合理;随着电流的增大,超磁致伸缩材料中的磁感应强度也随之增加并且磁感应强度逐渐趋于饱和。  相似文献   

4.
超磁致伸缩微位移执行器控制系统研究   总被引:1,自引:0,他引:1  
以单片机和上位PC微机为控制核心,设计并构建了利用超磁致伸缩棒开发的超磁致伸缩执行器的计算机闭环控制系统,完成了相应的软硬件设计.结合所开发的超磁致伸缩微位移执行器的结构建立了传递函数模型,针对微位移执行器控制系统进行了数字PID控制器设计,通过实验得出,在不降低其相对稳定性情况下数字控制系统的精度提高,为进一步提高超磁致伸缩执行器的精度、改善整个系统的动态特性奠定了基础.  相似文献   

5.
分析了执行器的工作原理,并给出了其磁化、磁致伸缩模型;建立了一个执行器在低频驱动、准静态领域应用的、忽略磁滞效应、从输入电流到输出位移/力之间的用于位移控制的控制模型。  相似文献   

6.
詹月林  陈西府 《科技信息》2012,(32):163-164
超磁致伸缩作动器具有推力强、反应快和分辨率高等特点,在精密定位、精密驱动、机器人、微型阀等领域展现了广阔的应用前景本文在介绍超磁致伸缩材料及其应用的基础上,分析了国内外超磁致伸缩作动器的研究动态、应用状况等,并对几类超磁致伸缩作动器的原理、结构进行了阐述,最后提出了超磁致伸缩作动器的四个研究方向。  相似文献   

7.
为使超磁致伸缩驱动微泵中超磁致伸缩材料(GMM)棒获得最佳的磁致伸缩性能,在ANSYS Maxwell软件中建立双线圈式驱动磁场、外线圈内永磁体式驱动磁场、内线圈外永磁体式驱动磁场模型,进行仿真分析,得到三种情况下微泵轴线上平均磁场强度和磁场均匀度,并通过试验验证优选结构的磁场强度和均匀度。结果表明:外线圈长度L_(q1)=104 mm,厚度d_(q1)=12.5 mm;内线圈长度L_(q2)=104 mm,厚度d_(q2)=12.5 mm的双线圈式驱动磁场相对于外线圈内永磁体式和内线圈外永磁体式平均磁场强度提高了117%和8.6%,磁场均匀度下降4%。试验结果与仿真结果基本吻合,验证了仿真模型的正确性。  相似文献   

8.
超磁致伸缩执行器动力学模型及数值模拟   总被引:1,自引:0,他引:1  
为提高超磁致伸缩执行器的控制精度,实现亚微米级的驱动与控制,准确描述执行器的动力学特性是关键环节之一.为建立超磁致伸缩执行器的动力学特性的数学模型,将Terfenol-D 棒作为粘弹性杆连续系统,将Terfenol-D棒在磁场驱动下产生的应变等效为磁-机械转换等效力,建立了执行器系统的一维波动方程,并采用有限元解法求解.模型的计算求解采用迭代方法,易于实现计算机控制.利用Matlab 7.0对不同频率等幅磁场驱动下Terfenol-D棒内的磁场-位移(H-u)曲线进行数值模拟仿真,仿真计算值与实验值误差在10%以内,表明建立的动力学模型能较好地反映磁致伸缩执行器的动力学特性.  相似文献   

9.
科学技术的快速发展使得机电设备越来越趋于微型化,为了在体积不足1cm^3的空间里达到精确测量,超磁致伸缩材料成为当下研究的热点。本文以J-A模型和磁-机效应法为依据,建立超磁致伸缩的磁机耦合模型,设计了以圆弧形超磁致伸缩薄片为核心部件的微型位移致动器。利用COMSOL Multiphysics仿真软件分析了当给予线圈电流密度为10^6A/m^2的驱动电流时,不同厚度的超磁致伸缩薄片模型,得到相应的应力张量图和磁致伸缩曲线。文中展示0.35mm厚度的铁镓合金辅以1mm厚度硅基底的致动器模型,并获得了较为理想的0.8μm输出位移量。将仿真与实验结果进行对比,证明了理论模型的准确性以及执行器结构的可行性。该微位移执行器具有体积小、响应快、精度高、便于集成等优点,在振动控制、微定位、机器人等领域有着广阔的应用前景。  相似文献   

10.
超磁致伸缩材料(GMM)是一种新型的功能材料,其磁致伸缩系数与磁场强度、温度、压力等有关。以超磁致伸缩高速响应电磁阀的研究为背景,介绍超磁致伸缩材料特性参数的测量方法,及适用于超磁致伸缩材料特性参数测量的测试装置。  相似文献   

11.
基于超磁致伸缩材料(giant magnetostrictive material,GMM)正逆耦合效应以及能量转换特性,提出一种集驱动、传动及传感于一体的新型自感知谐波驱动器构想.利用ANSYS分析谐波减速器运行过程中波发生器应力分布情况,结合波发生器尺寸结构求解GMM棒的尺寸参数.基于毕奥萨伐尔定律推导驱动线圈内部磁场求解方法并设计驱动磁场和偏置磁场布置方式.利用COMSOL Multiphysics建立驱动器电磁机三场耦合模型,分析在不同条件下驱动线圈内部磁场分布情况以及驱动器的位移输出特性.结果表明:在永磁体总长度不变情况下,对永磁体实行内置均匀布置,随着永磁体片数逐渐增加,磁场均匀度从44%降低到26%,输出最大位移从0.123 mm下降到0.114 mm,GMM棒应力分布均匀度显著提高.  相似文献   

12.
基于超磁致伸缩微致动器实验所得的激励电流-磁致伸缩材料轴向位置-磁场强度三者之间的关系式,修正了厚壁线圈轴向电流-磁场理论公式.利用修正公式对超磁致伸缩微致动器动力学模型进行理论分析,得到了微致动器的振动响应;分析了修正系数、偏置磁场及预压应力对微致动器的影响.结果表明:修正系数对微致动器动力学特性影响十分明显,当修正系数K′=1.24时,基于实验拟合函数与基于厚壁线圈电流-磁场理论公式所得到的微致动器的输出位移与输入激励电流之间的滞回环完全吻合;微致动器振动响应具有明显的非线性特性,而且修正系数对其影响很大.偏置磁场与预压应力对微致动器的幅频特性影响也十分明显.  相似文献   

13.
以Maxwell’s方程为基础,结合超磁致伸缩材料压磁方程,建立了考虑介电常数、预压应力等参数的超磁致伸缩材料内部磁场径向分布模型,并对其进行了理论分析和数值仿真.讨论了介电常数、预压应力、激励频率等参数对材料内部磁场分布及滞回特性的影响.结果表明,超磁致伸缩材料径向内部磁场分布具有明显的集肤效应和滞回特性;受电导率与介电常数共同影响,材料的磁场分布出现了双峰现象;沿磁致伸缩材料半径增大方向,外激励磁场与材料内部磁场的滞回特性逐渐减弱,磁场损耗随之降低;随着预压应力的增大,材料内部的集肤效应逐渐减小.  相似文献   

14.
针对微振动控制中对作动器的要求,基于超磁致伸缩材料的特性对作动器进行了优化设计,通过对其进行磁路分析、热效应分析,验证了设计的合理性;针对超磁致伸缩材料的非线性性能,利用实验测量的主迟滞回线和一阶折返曲线数据点建立Preisach模型,采用输入校正迭代算法对非线性进行补偿,然后对作动器进行精密定位控制实验.实验结果表明...  相似文献   

15.
论述了超磁致伸缩材料的主要物理特性,通过对其迟滞现象的实验观测,指出迟滞现象对超磁致伸缩作动器的精确控制造成的影响.提出了超磁化的方法对迟滞现象进行改善,并通过实验进行了验证,最后从理论上对其有效性做了分析论述.研究表明:采用超磁化后,作动器的力-磁耦合关系更明确,对作动器的控制效果更好.  相似文献   

16.
超磁致伸缩材料内部磁场与涡流损耗理论分析   总被引:1,自引:0,他引:1  
在对纵向激励磁场中超磁致伸缩材料进行分析的基础上,利用Maxwell's方程建立了用Bessel函数描述的超磁致伸缩材料内部磁场分布函数,由Bessel函数解析方法确立了超磁致伸缩材料内部磁场Kelvin表达式.通过对材料内部磁场分布的定性分析,得出内部磁场具有典型滞回特性.利用磁能理论对材料内部涡流损耗进行了初步理论分析,得出由Kelvin函数表示的材料内部涡流损耗表达式.并对激励频率、电导率、材料半径等因素对涡流损耗的影响进行了初步讨论,为超磁致伸缩材料参数的选取奠定了基础.  相似文献   

17.
设计了一种新型超磁致伸缩驱动器,通过ANSYS有限元分析软件对超磁致伸缩驱动器的内部磁场进行了仿真。并搭建了输出力动态响应特性测试系统,通过改变外加电流与预紧力大小对驱动器的动态响应时间进行研究。实验结果表明,该驱动器的磁场设计合理;当电流小于2.5 A且预压力一定时,其输出力响应时间随电流的增大而减小;设计的驱动器在预压力达到300 N时输出力响应时间最短。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号