首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The Mg-9.3 wt% (TiH1.971-TiH)?0.7 wt% Nb nanocomposite has been synthesized by hydrogen plasma-metal reaction (HPMR) approach to enhance the hydrogen sorption kinetics of Mg at moderate temperatures by providing nanosizing effect of increasing H “diffusion channels” and adding transition metallic catalysts. The Mg nanoparticles (NPs) were in hexagonal shape range from 50 to 350 nm and the average size of the NPs was 177 nm. The small spherical TiH1.971, TiH and Nb NPs of about 25 nm uniformly decorated on the surface of the big Mg NPs. The Mg-TiH1.971-TiH-Nb nanocomposite could quickly absorb 5.6 wt% H2 within 5 min at 573 K and 4.5 wt% H2 within 5 min at 523 K, whereas the pure Mg prepared by HPMR could only absorb 4 and 1.5 wt% H2 at the same temperatures. TiH1.971, TiH and Nb NPs transformed into TiH2 and NbH during hydrogenation and recovered after dehydrogenation process. The apparent activation energies of the nanocomposite for hydrogenation and dehydrogenation were 45.0 and 50.7 kJ mol?1, which are much smaller than those of pure Mg NPs, 123.8 and 127.7 kJ mol?1. The improved sorption kinetics of the Mg-based nanocomposite at moderate temperatures and the small activation energy can be interpreted by the nanostructure of Mg and the synergic catalytic effects of Ti hydrides and Nb NPs.  相似文献   

2.
A simple solvent-free method to synthesize MgH2 nanoparticles (MgH2 NPs) uniformly grown on graphene nanosheets (GNs) has been reported in this paper. Based on the formation of MgH2 by di-n-butylmagnesium ((C4H9)2Mg) thermal decomposition under hydrogen pressure, the GNs were added as matrix to hinder the agglomeration and growing of MgH2 NPs. The fabricated MgH2/GNs nanocomposites, in which MgH2 NPs were homogenously growing in the graphene matrix, have been synthesized by the favorable adsorption energy between (C4H9)2Mg and GNs. Resulting from the one-step solvent-free route, the generated MgH2 NPs shows high hydrogen capacity and steady hydriding and dehydriding properties, without the interference of the synthetic medium. At the same time, the size of the fabricated MgH2 NPs can be controlled by adjusting the mass ratio of MgH2 to graphene, the various hydrogen pressure and temperature. Attributed to smaller size effect, well uniform distribution of high density MgH2 NPs, and the agglomeration blocking ability of graphene, the MgH2/GNs-40 wt% exhibits the favorite hydrogen storage performance.  相似文献   

3.
The application of magnesium hydride(MgH_2) is limited due to the high reaction temperature and slow kinetics during dehydrogenation. In order to ameliorate the dehydrogenation property of MgH_2, MgC_(0.5)Co_3 compound with induction and catalytic effects was introduced into the Mg/MgH_2 system via ball-milling and hydriding combustion methods in present study. Compared to the pure MgH_2,the initial hydrogen desorption temperature of MgH_2–MgC_(0.5)Co_3 composite lowered to 237°C, decreasing by 141°C. At 325°C the MgH_2–MgC_(0.5)Co_3 composite could release 4.38 wt% H_2 within 60 min, which is 4.5 times the capacity of hydrogen released by as milled-MgH_2. Besides, the hydrogen desorption activation energy of the MgH_2–MgC_(0.5)Co_3 composite was dramatically reduced to 126.7 ± 1.4 k J/mol. It was observed that MgC_(0.5)Co_3 was chemically stable and no chemical transformation occurred after cycling, which not only inhibited the nucleation and growth of composite particles, but also had a positive effect on the hydrogen desorption reaction of MgH_2 due to its catalytic effect.This study may provide references for designing and synthesizing Mg–C–Co alloy compound for the Mg-based hydrogen storage area.  相似文献   

4.
Perovskite-type borohydride, NH_4Ca(BH_4)_3, is considered as a promising hydrogen storage material due to its high gravimetric hydrogen capacity(15.7 wt%). In this work, the dehydrogenation performance and reaction pathway of NH_4Ca(BH_4)_3 have been systematically investigated. It is found that the initial decomposition temperature is only 65 °C, suggesting a low thermodynamic stability of NH4Ca(BH4)3. The desorption kinetics conducted by differential scanning calorimetry(DSC) indicates that the activation energy of decomposition is about 226.1 k J/mol. The dehydrogenation pathway of NH_4Ca(BH_4)_3 characterized by fourier-transform infrared spectroscopy(FTIR) and solid-state nuclear magnetic resonance(NMR) shows a stepwise decomposition process,in which the initial dehydrogenation is due to destabilization of H~+ in NH4 and H-in BH4 followed by the subsequent dehydrogenation steps arising from the decomposition of homologous NH_3BH_3 and the final decomposition of Ca(BH_4)_2 at a high temperature, respectively.  相似文献   

5.
The discovery of new hydrogen storage materials has greatly driven the entire hydrogen storage technology forward in the past decades. Magnesium hydride, which has a high hydrogen capacity and low cost, has been considered as one of the most promising candidates for hydrogen storage. Unfortunately, extensive efforts are still needed to better improve its hydrogen storage performance, since MgH2 suffers from high operation temperature, poor dehydrogenation kinetic, and unsatisfactory thermal management. In this paper, we present an overview of recent progress in improving the hydrogenation/de-hydrogenation performance of MgH2, with special emphases on the additive-enhanced MgH2 composites. Other widely used strategies (e. g. alloying, nanoscaling, nanoconfinement) in tuning the kinetics and thermodynamics of MgH2 are also presented. A realistic perspective regarding to the challenges and opportunities for further researches in MgH2 is proposed.  相似文献   

6.
The addition of catalysts and rare earth elements is considered to be very effective methods to enhance the hydrogenation/dehydrogenation properties of Mg and Mg-based hydrides. In this paper, the REMg11 Ni+ 5 wt%CeO_2(RE = Sm, Y)(named REMg11 Ni-5 CeO_2(RE = Sm, Y)) alloys were fabricated through ball milling. The phase composition and structure of the as-milled alloys were investigated in detail. The isothermal hydrogen storage thermodynamics and kinetics of the as-milled alloys were measured by using an automatically Sievert apparatus. Non-isothermal dehydrogenation performance of the alloys was investigated by thermogravimetry(TG) and differential scanning calorimetry(DSC) at different heating rates. The results revealed that all the asmilled alloys were the nanocrystalline and amorphous structure. The RE = Y alloy had a faster hydriding rate and a lower onset hydrogen desorption temperature than the RE = Sm alloy. The superior property of the RE= Y alloy depended on the decrease of the dehydrogenation activation energy. By means of the measurement of Pressure-Composition-Isotherm(P-C-T) curves, the thermodynamic parameters of the REMg11 Ni-5 CeO_2(RE =Sm, Y) alloys were calculated, and the dehydrogenation enthalpy change was 74.86 k J/mol for the RE = Sm alloy and 73.75 k J/mol for the RE = Y alloy, respectively.  相似文献   

7.
Hydrogen storage in solid-state materials is believed to be a most promising hydrogen-storage technology for high efficiency, low risk and low cost. Mg(BH4)2 is regarded as one of most potential materials in hydrogen storage areas in view of its high hydrogen capacities (14.9 ​wt% and 145–147 ​kg ​cm−3). However, the drawbacks of Mg(BH4)2 including high desorption temperatures (about 250 ​°C–580 ​°C), sluggish kinetics, and poor reversibility make it difficult to be used for onboard hydrogen storage of fuel cell vehicles. A lot of researches on improving the dehydrogenation reaction thermodynamics and kinetics have been done, mainly including: additives or catalysts doping, nanoconfining Mg(BH4)2 in nanoporous hosts, forming reactive hydrides systems, multi-cation/anion composites or other derivatives of Mg(BH4)2. Some favorable results have been obtained. This review provides an overview of current research progress in magnesium borohydride, including: synthesis methods, crystal structures, decomposition behaviors, as well as emphasized performance improvements for hydrogen storage.  相似文献   

8.
As two important members of complex hydrides, Mg(BH4)2 and NaBH4 have a high gravimetric capacity (14.9 and 10.8 ​wt%, respectively). In this study, the Mg(BH4)2 was synthesized by the ion exchange method. Afterwards, the Mg(BH4)2 and NaBH4 composites with different amounts (30, 40 and 50 ​wt%) of NdF3 were prepared by mechanical milling. Effects of the NdF3 on the microstructural evolution and hydrogen storage properties were investigated. The results show that NdF3 catalyst can significantly improve the dehydrogenation kinetics of the eutectic composites of NaBH4–Mg(BH4)2. The onset hydrogen desorption temperature of the composites is about 88.6 ​°C, which is about 110 ​°C lower than that of Mg(BH4)2 and NaBH4 composites. Mg(BH4)2–NaBH4-0.5NdF3 composites can released 5.2 ​wt% H2 at 250 ​°C within 30 ​min, and the dehydrogenation capacity is significantly higher than that of Mg(BH4)2–NaBH4 composites. The analysis of the dehydrogenation mechanism reveals that NdF3 takes participate in the reaction to generate NaMgF3 to promote the dehydrogenation reaction process of the composites.  相似文献   

9.
采用高能球磨对配位氢化物LiAlH4进行纳米化,通过 X 射线衍射分析,压力、组分等温测试等手段,研究了球磨时间、球料比等球磨参量对LiAlH4的微观结构和等温放氢性能的影响,并在此基础上揭示了球磨对LiAlH4的储氢性能和机制的影响.实验结果表明:LiAlH4分解为Li3AlH6和Al 的放氢阶段与材料的晶粒尺寸有着密切的关系,较小的晶粒尺寸能有效地改善样品的储氢动力学性能;球磨能使 Li3AlH6分解为LiH 和 Al的放氢阶段的起始温度显著降低;在适当的球磨参数下,LiAlH4的放氢有可能按不同于目前普遍认同的放氢模式进行.  相似文献   

10.
The effects of doping FeCl_3 on the LiNH_2-2LiH system were investigated systematically. FeCl_3 was prior to react with LiH during ball milling their mixtures. The metallic Fe, which is generated from metathesis reaction between FeCl_3 and LiH, plays an important role on improving the dehydrogenation kinetics of LiNH_2-2LiH system. The results indicated that the dehydrogenation peak and ending temperatures of the doped 1 mol%FeCl_3 sample shifted to low temperatures, and the dehydrogenation active energy changed from 102.45 k J/mol to 87.52 k J/mol. While increasing the amount of FeCl_3, an excess of LiCl, the by-product of metathesis reaction between FeCl_3 and Li H, can stabilize LiNH_2 and thus hinder hydrogen desorption. The dehydrogenation product is a new solid cubic phase solution of lithium imide-chloride. The high limit of the solid solution of LiCl and Li_2NH is near the molar ratio of 1:1.  相似文献   

11.
The alloying element component is very crucial in improving the hydrogen storage performance of amorphous alloys.In this work,quaternary amorphous Mg_(70-x)Ce_(10)Ni_(20)Cu_x(x=3,7.5,10)alloys were prepared by meltspinning and the effect of Cu on hydrogenation and dehydrogenation were investigated in comparison with the Mg_(70-x)Ce_(10)Ni_(20)amorphous alloys.The initial hydrogenation kinetics of amorphous Mg_(70-x)Ce_(10)Ni_(20)Cu_x(x=0,3,7.5,10)was improved with the increase of Cu content according to the kinetics measured at a temperature below crystallization temperature.As hydrogen is absorbed,an amorphous-amorphous transition occurred,and relatively high Cu content would lead to phase separation in the hydrogenation process.Amorphous phase have much higher crystallization temperature after it absorbs hydrogen and the addition of Cu could increase the crystallization activation energy of amorphous hydrides.In addition,the increase of Cu content could reduce the dehydrogenation temperature of amorphous hydrides,which gives a significant indication for future improving research of the hydrogen desorption performance of Mg based amorphous hydrides.  相似文献   

12.
In this work, polyvinylpyrrolidone(PVP) coated Mg_(95)Ni_5 nano-composites were prepared by hydriding combustion synthesis(HCS) plus wet mechanical milling(WM) with tetrahydrofuran(THF) and donated as WM-x wt% PVP(x = 1, 3, 5 and 7) respectively. The phase compositions, microstructures and dehydriding property, as well as the co-effect of PVP and THF were investigated in detail. XRD results showed that the average crystal size of MgH_2 in the milled Mg_(95)Ni_5 decreased from 23 nm without PVP to 18 nm with 1 wt% PVP. The peak temperature of dehydrogenation of MgH_2 in the milled Mg_(95)Ni_5 decreased from 293.0 ℃ without THF to 250.4 ℃ with THF. The apparent activation energy for decomposition of MgH_2 in WM-7 wt% PVP was estimated to be 66.94 kJ/mol, which is 37.70 kJ/mol lower than that of milled Mg_(95)Ni_5 without THF and PVP. PVP and THF can facilitate the refinement of particle size during mechanical milling process. Attributed to small particle sizes and synergistic effect of PVP and THF, the composites exhibit markedly improved dehydriding properties.  相似文献   

13.
To improve the hydrogen storage properties of Mg-based alloys, a composite material of MgH2 + 10wt%LaH3 + 10wt%NbH was prepared by a mechanical milling method. The composite exhibited favorable hydrogen desorption properties, releasing 0.67wt% H2 within 20 min at 548 K, which was ascribed to the co-catalytic effect of LaH3 and NbH upon dehydriding of MgH2. By contrast, pure MgH2, an MgH2 + 20wt%LaH3 composite, and an MgH2 + 20wt%NbH composite only released 0.1wt%, 0.28wt%, and 0.57wt% H2, respectively, un-der the same conditions. Analyses by X-ray diffraction and scanning electron microscopy showed that the composite particle size was small. Energy-dispersive X-ray spectroscopic mapping demonstrated that La and Nb were distributed homogeneously in the matrix. Differential thermal analysis revealed that the dehydriding peak temperature of the MgH2 + 10wt%LaH3 + 10wt%NbH composite was 595.03 K, which was 94.26 K lower than that of pure MgH2. The introduction of LaH3 and NbH was beneficial to the hydrogen storage performance of MgH2.  相似文献   

14.
采用基于密度泛函理论第一性原理的Vienna Ab initio Simulation Package (VASP)软件研究了CsMgH3, Cs4Mg3H10和Cs2MgH4氢化物的晶体结构、反应焓和电子结构. 结果表明 CsMgH3, Cs4Mg3H10和Cs2MgH4都能直接由单质Cs和Mg在H2中反应生成, 其中Cs4Mg3H10的形成能力最强; 态密度和电荷密度的分析与讨论表明了Mg和H的成键机制为离子键伴随着显著的共价键.  相似文献   

15.
镍对催化裂化催化剂的污染特性   总被引:1,自引:0,他引:1  
采用量子化学中的从头计算法 ,研究了金属镍对催化裂化催化剂的污染特性 ,建立了镍与烃分子发生脱氢反应的量子化学计算模型 ,确定了反应的速控步骤 ,并着重研究了镍价态变化 (Ni0 ,Ni ,Ni2 )对烃分子脱氢反应活性的影响规律。通过计算得出Ni0 ,Ni ,Ni2 在脱氢反应速控步骤的活化能分别为 2 15 .0 85kJ/mol,32 0 .0 0 5kJ/mol和 6 5 0 .5 0 2kJ/mol,显示出低价镍脱氢活性强的特点。这与标准轻油微反活性评价实验结果相吻合  相似文献   

16.
硅胶的孔径结构对脱附活化能的影响   总被引:1,自引:0,他引:1  
该文为研究硅胶孔结构对水蒸气吸附速率/脱附活化能的影响,在吸附水蒸气动力学实验中采用了间歇式吸附方法,用程序升温脱附技术测定了水在硅胶上的程序升温脱附(TPD)曲线并估算了水的脱附活化能。结果表明:A型、B型和C型硅胶的平均孔径分别为2nm、5.28nm和10.65nm。在10%~45%低湿范围内,硅胶的平均孔径越大,其吸附初始阶段的吸附速率越快,平衡吸湿量越小;高湿度条件下,硅胶的平均孔径和孔容越大,其吸附初始阶段的吸附速率越慢,平衡吸湿量越大。水分子在A型、B型和C型硅胶上的脱附活化能分别为35.54kJ/mol、31.41kJ/mol和26.16kJ/mol,说明水分子在硅胶上的脱附活化能随着硅胶的孔径增加而明显减小。与微孔硅胶相比.在中高湿度下中孔硅胶有较大的平衡吸附量和较低的脱附活化能。  相似文献   

17.
Mg-based materials are currently a hot research topic as hydrogen storage materials due to their considerable theoretical hydrogen storage capacity. However, the kinetic performance of hydrogen absorption and desorption of Mg is too slow and requires high temperature, which seriously hinders the application of this material. MXene is a new type of two-dimensional material with significant role in improving thermodynamics and kinetics. In this experiment, a two-dimensional layered MXene containing Cl functional group was prepared by molten salt etching using the Ti-containing MAX phase as the raw material. Then different ratios of Ti3C2Clx were uniformly dispersed onto the surface of Mg by high energy ball milling. The samples were characterized by hydrogen absorption and desorption kinetics, SEM, XRD, XPS, and DSC to investigate the effect of Ti3C2Clx on the hydrogen absorption and desorption performance of Mg. The onset hydrogen absorption temperature can be reduced to room temperature and the hydrogen release temperature is reduced by 200 ​°C by doping Ti3C2Clx. And there is also 5.4 ​wt% hydrogen storage in the isothermal hydrogen absorption test at 400 ​°C. The results of DSC demonstrate that the Ea of Mg+15 ​wt% Ti3C2Clx was reduced by 12.6% compared to pristine Mg. The ΔH is almost invariable. The results of XPS show that the presence of multivalent Ti promotes electron transfer and thus improves the conversion between Mg2+/Mg and H/H. This study provides a guideline for further improving the hydrogen absorption and desorption performance of Mg-based hydrogen storage materials.  相似文献   

18.
用快淬技术制备Mg2-xLaxNi(x=0,0.2,0.4,0.6)贮氢合金,用XRD,SEM和HRTEM分析合金的微观组织结构;测试合金的气态及电化学贮氢动力学。结果表明:快淬二元Mg2Ni合金具有典型的纳米晶结构,而快淬La替代合金明显地具有非晶结构,La替代Mg提高Mg2Ni型合金的非晶形成能力。La替代Mg明显地改变Mg2Ni型合金的相组成,当x=0.4时,合金的主相改变为(La,Mg)Ni3+LaMg3。快淬及La替代明显影响合金的气态及电化学贮氢动力学,La替代使合金的吸氢动力学先降低后增加,但使合金的气态脱氢及电化学贮氢动力学先增加后降低。快淬对合金气态及电化学贮氢动力学的影响与合金的成分相关,对于La0.4合金,合金的气态吸氢动力学随淬速的增加先增加后减小,其放氢动力学随淬速的增加而增加。  相似文献   

19.
采用组合量子化学ONIOM方法,基于氨基作为氢迁移桥梁,考察单壁碳纳米管(SWCNT)与水复合环境下α-丙氨酸分子(α-Ala)的手性转变机理.结果表明:基于氨基作为氢迁移桥梁的手性转变反应有a和b两个通道,其中通道a最具优势;水与扶手椅型SWCNT复合环境对氢迁移反应具有较好的催化作用;在SWCNT(8,8)的限域环境下,3个水分子构成的链使主反应通道的决速步骤能垒从裸反应的266.1kJ/mol降至117.8kJ/mol.表明SWCNT(8,8)与水构成的复合环境可作为实现α-Ala手性转变的理想纳米反应器,生命体内α-Ala分子可在类似的纳米环境实现旋光异构.  相似文献   

20.
对制备的Zr_(57.5)Cu_(27.3)Al_(8.5)Ni_(6.7)非晶合金的等温与非等温晶化动力学通过差式扫描量热法(DSC)进行了研究,根据Kisinger方程计算出Zr_(57.5)Cu_(27.3)Al_(8.5)Ni_(6.7)非晶合金在非等温条件下的激活能Eg,Ex,Ep1和Ep2,分别为409.70kJ/mol(±60.07kJ/mol),335.53kJ/mol(±39.94kJ/mol),323.95kJ/mol(±15.21kJ/mol)和187.75kJ/mol(±13.27kJ/mol).在718K,723K,728K和733K等温条件下得到的晶化体积分数与时间的关系曲线呈"S"型,表明晶化过程为典型的形核长大型转变.Avrami指数n的范围为3≤n≤4,表明晶化过程由界面控制的二维长大转变为界面控制的三维长大,形核率随时间逐渐降低至稳定,等温晶化过程得到的激活能平均值434.81kJ/mol,高于非等温晶化过程的有效激活能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号