首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
镁基储氢材料的研究进展   总被引:3,自引:0,他引:3  
从镁基储氢材料体系入手,综述了该体系的研究情况及近期进展.对镁基储氢材料进行了合理的分类,将其分为单质镁储氢材料、镁基储氢合金和镁基储氢复合材料.并结合各类镁基储氢材料的国内外研究状况,指出要改善镁基储氢材料的储氢性能,必须走多元合金化的路线并在学习有关理论的基础上,采用优化合金成分与新的合成方法来进一步提高材料的储氢性能.  相似文献   

2.
Titanium and its alloys are promising materials for hydrogen storage. However, hydrogen penetration accompanies the exploitation of hydrogen storage alloys. In particular, hydrogen penetration and accumulation in titanium alloys changes their mechanical properties. Therefore, the research works of such materials are mainly focused on improving the reversibility of hydrogen absorption-liberation processes, increasing the thermodynamic characteristics of the alloys, and augmenting their hydrogen storage capacity. In the process of hydrogenation-dehydrogenation, the formed defects both significantly reduce hydrogen storage capacity and can also be used to create effective traps for hydrogen. Therefore, the investigation of hydrogen interaction with structural defects in titanium and its alloys is very important. The present work, the hydrogen-induced formation of defects in the alloys of commercially pure titanium under temperature gas-phase hydrogenation(873 K) has studied by positron lifetime spectroscopy and Doppler broadening spectroscopy. Based on the evolution of positron annihilation parameters τ_f, τ_d, their corresponding intensities If, Idand relative changes of parameters S/S_0 and W/W_0, the peculiarities of hydrogen interaction with titanium lattice defects were investigated in a wide range of hydrogen concentrations from 0.8at% to 32.0at%.  相似文献   

3.
 镁基储氢材料具有储氢量高、镁资源丰富以及成本低廉等优点,被认为是极具应用前景的一类固态储氢材料。利用镁基储氢材料供氢主要有热分解放氢和水解产氢2种途径。MgH2的热分解放氢焓值高(75 kJ/mol H2),造成其放氢温度较高、动力学差; MgH2的水解过程中,由于常温水解产物Mg(OH)2逐渐包裹在MgH2表面,阻隔了MgH2与水的接触,从而导致水解产氢效率较低。近年来,大量研究工作聚焦于改善MgH2的热解/水解供氢性能及实际应用,已经取得了大量成果。针对目前国内外镁基固态储氢材料的研发,总结了材料/结构改性、反应条件对镁基储氢材料的热解/水解性能的影响,重点阐述了固态镁基储氢材料组成成分-微观结构-储放氢性能之间的关系,并对镁基储氢系统及实际应用场景进行了归纳。未来通过镁基固态储运氢技术的发展,将实现氢气的高安全、高效及大规模储运,助力中国氢能产业的发展。  相似文献   

4.
SiLi_5~+团簇由于具有高稳定特性,并且SiLi_5~+可以最多有效绑定15个氢分子,其理论质量储氢密度达到了32.3 wt%.在B3LYP理论水平上,氢分子与SiLi_5~+相互作用过程中的平均氢吸附能在1.36~2.62 kcal·mol~(-1)之间,从平均氢吸附能看,此系统满足可逆吸氢反应的热力学要求,可以作为理想储氢材料的候选物.  相似文献   

5.
Ml(NiCuAlZn)5合金制备及其电化学性能研究   总被引:1,自引:0,他引:1  
利用中间合金法制备了无钴含锌混合稀土系储氢合金电级材料Ml(NiCuAlZn)5,并对其晶体结构、热力学及电化学性能进行了研究。  相似文献   

6.
根据受噪声作用的有限化学反应系统的随机热力学理论,以存在膜平衡交联的简单反应模型为例,建立了交联体系的有效主方程及有效随机熵平衡方程。进而阐了这类体系中有效熵产生的统计内涵,初步揭示出内涨落和来自化学反应交联的外噪声的随机热化学效应。  相似文献   

7.
采用基团贡献法对对硝基乙苯、乙苯及对乙基苯甲醚中乙基选择氧化反应主副产物的热力学数据进行了估算;并通过建立三个反应体系中各步反应的焓变ΔrHθm、吉布斯自由能变化ΔrGθm和平衡常数K与反应温度T的关系,对反应过程进行了较为详尽的热力学研究。在计算的温度范围内,研究了反应温度对对乙基苯甲醚、对硝基乙苯及乙苯催化氧化制备相应芳酮的影响。分析结果为如何提高目标产物酮的选择性研究提供了基础数据;并对优化反应的工艺条件及今后工业化应用具有重要的指导意义。  相似文献   

8.
Nanostructured semiconductors have been researched intensively for energy conversion and storage applications in recent decades. Despite of tremendous find- ings and achievements, the performance of the devices resulted from the nanomaterials in terms of energy conversion efficiency and storage capacity needs further improvement to become economically viable for subsequent commercializa- tion. Hydrogenation is a simple, efficient, and cost-effective way for tailoring the electronic and morphological properties of the nanostructured materials. This work reviews a series of hydrogenated nanostructured materials was produced by the hydrogenation of a wide range of nanomaterials. These materials with improved inherent conductivity and changed characteristic lattice structure possess much enhanced per- formance for energy conversion application, e.g., photo- electrocatalytic production of hydrogen, and energy storage applications, e.g., lithium-ion batteries and supercapacitors. The hydrogenation mechanisms as well as resultant properties responsible for the efficiency improvement are explored in details. This work provides guidance for researchers to use the hydrogenation technology to design functional materials.  相似文献   

9.
纳米材料的规定热力学函数和表面热力学函数是物质的本征函数,与材料的催化、吸附性质等具有紧密联系。因此采用科学的技术方法准确获取真实体系的表面热力学函数具有重要的意义,溶解热力学法因具有操作简单、灵敏度高及无假设条件等独特优势,相比其它方法更加科学。本文通过测定溴化银纳米颗粒在水溶液中的电导率,结合溶解热力学理论计算纳米材料的溶解平衡常数。以块体材料为比较标准,获取了纳米AgBr的溶解热力学函数、表面热力学函数、偏摩尔表面热力学和规定热力学函数。本工作为纳米AgBr在感光、催化、吸附等领域的应用提供了物理化学参数,对预测难溶盐类纳米材料溶解、催化、吸附等性质有重要的指导意义。  相似文献   

10.
Hydrogen storage in solid-state materials is believed to be a most promising hydrogen-storage technology for high efficiency, low risk and low cost. Mg(BH4)2 is regarded as one of most potential materials in hydrogen storage areas in view of its high hydrogen capacities (14.9 ​wt% and 145–147 ​kg ​cm−3). However, the drawbacks of Mg(BH4)2 including high desorption temperatures (about 250 ​°C–580 ​°C), sluggish kinetics, and poor reversibility make it difficult to be used for onboard hydrogen storage of fuel cell vehicles. A lot of researches on improving the dehydrogenation reaction thermodynamics and kinetics have been done, mainly including: additives or catalysts doping, nanoconfining Mg(BH4)2 in nanoporous hosts, forming reactive hydrides systems, multi-cation/anion composites or other derivatives of Mg(BH4)2. Some favorable results have been obtained. This review provides an overview of current research progress in magnesium borohydride, including: synthesis methods, crystal structures, decomposition behaviors, as well as emphasized performance improvements for hydrogen storage.  相似文献   

11.
氨合硼氢化钛是一类放氢温度适宜的高容量储氢材料,但已报道的通过球磨法制备的氨合硼氢化钛通常含有质量分数42%以上的LiCl杂质,降低了体系总含氢量的同时也为氨合硼氢化钛本征放氢性能的表征带来了困难.因此,纯氨合硼氢化钛的制备和性能表征十分必要.本文以钛酸四异丙酯、乙硼烷、四氢呋喃和NH_3为初始原料,通过先制备前驱体Ti(BH_4)_3·2THF,然后再氨化的二步反应首次成功合成纯Ti(BH_4)_3·5NH_3,并对前驱体和氨合硼氢化钛的组成、结构和放氢性能进行系统地研究.结果表明,前驱体Ti(BH_4)_3·2THF属于斜方晶系,Pbcn空间群,且在室温下能稳定存在,是制备氨合硼氢化钛的良好前驱体;纯Ti(BH_4)_3·5NH_3具有良好的放氢性能,于75℃开始放氢,至200℃释放质量分数约10%的氢气.  相似文献   

12.
研究了强脉冲离子束(IPIB)对Ni/Ti和Al/Ti体系的混合效果,并与常规离子束混合进行了对比研究,表明IPIB辐照确实获得了比常规离子束辐照更厚的混合层,且混合效率远高于常规离子束。但对于不同的膜/基体体系,IPIB混合效果相差很大。这与膜和基体的热力学特性的差异相关。在IPIB辐照过程中,膜材料损失严重,特别是膜和基体的热力学特性差异大的样品损失更加严重。探讨了IPIB辐照不同于常规离子束混合的两种特殊混合机制以及膜材料损失的原因。  相似文献   

13.
Under the development of International Thermonuclear Experimental Reactor (ITER) system aimed at realizing the controllable fusion reaction to solve the energy crisis fundamentally, there is an urgent need to find an appropriate material for tritium handling. ZrCo alloy is considered to be a promising candidate for the storage and delivery of hydrogen isotopes due to the favorable characteristics such as low plateau pressure for absorption, high dissociation pressure at moderate temperature and better ability of trapping 3He. However, the hydrogen induced disproportionation and the slower recovery/deliverty rate of ZrCo-based alloys have limited their further application in ITER system. This review summarizes the efforts towards enhancing the hydrogen storage properties of ZrCo-based alloys including element substitution, surface modification, disproportionation mechanism investigation and the isotope effect study. Element substitution and surface modification play positive role to improve the anti-disproportionation ability and kinetic property of the alloys. However, the ZrCo-based alloys require to be further modified by more attempts such as new composition, novelty modification method or catalyst addition in order to better satisfy the application demands for tritium handling. Moreover, new insight for further understanding the inner disproportionation mechanisms of this material is needed by combining the advance characterization and theoretical analysis, which is in favor of addressing the disproportionation problem of the ZrCo-based alloys essentially.  相似文献   

14.
Interaction of hydrogen with metal nitrides and imides   总被引:19,自引:0,他引:19  
Chen P  Xiong Z  Luo J  Lin J  Tan KL 《Nature》2002,420(6913):302-304
The pursuit of a clean and healthy environment has stimulated much effort in the development of technologies for the utilization of hydrogen-based energy. A critical issue is the need for practical systems for hydrogen storage, a problem that remains unresolved after several decades of exploration. In this context, the possibility of storing hydrogen in advanced carbon materials has generated considerable interest. But confirmation and a mechanistic understanding of the hydrogen-storage capabilities of these materials still require much work. Our previously published work on hydrogen uptake by alkali-doped carbon nanotubes cannot be reproduced by others. It was realized by us and also demonstrated by Pinkerton et al. that most of the weight gain was due to moisture, which the alkali oxide picked up from the atmosphere. Here we describe a different material system, lithium nitride, which shows potential as a hydrogen storage medium. Lithium nitride is usually employed as an electrode, or as a starting material for the synthesis of binary or ternary nitrides. Using a variety of techniques, we demonstrate that this compound can also reversibly take up large amounts of hydrogen. Although the temperature required to release the hydrogen at usable pressures is too high for practical application of the present material, we suggest that more investigations are needed, as the metal-N-H system could prove to be a promising route to reversible hydrogen storage.  相似文献   

15.
The increasing energy consumption and envi- ronmental concerns due to burning fossil fuel are key drivers for the development of effective energy storage systems based on innovative materials. Among these materials, graphene has emerged as one of the most promising due to its chemical, electrical, and mechanical properties. Heteroatom doping has been proven as an effective way to tailor the properties of graphene and render its potential use for energy storage devices. In this view, we review the recent developments in the synthesis and applications of heteroatom-doped graphene in supercapacitors and lithium ion batteries.  相似文献   

16.
利用模式识别的偏最小二乘法对过渡金属二元合金氢化物的形成和贮氢性能进行分析,结果表明:利用化学健参数-模式识别方法可以建立过渡金属二元合金贮氢材料形成的数学模型,是贮氢材料设计的一种用方法。  相似文献   

17.
纳米结构合金的机械合金化制备   总被引:7,自引:1,他引:6  
简要回顾了机械合金化(MA)技术发展的概况,简述了MA在合金中引起的结构演变和非平衡相变的基本过程和机制,在此基础上,结合作者近年来的研究工作,介绍了纳米晶过饱和固溶体合金,纳米相复合合金,纳米结构储氢合金等非平衡态材料的MA制备,及其相关的微观结构与性能。  相似文献   

18.
High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism.Multitudinous kinetic models have been developed to describe the kinetic process.However,these kinetic models were de-duced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps(RCSs),which sometimes lead to confusion during application.The kinetic analysis procedures using these kinetic models,as well as the key kinetic parameters,are unclear for many researchers who are unfamiliar with this field.These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys.Thus,this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption,surface penetration,diffusion of hydrogen,nucleation and growth,and chemical reaction processes.The analysis procedures of kinetic experimental data are expounded,as well as the effects of temperature,hydrogen pressure,and particle radius.The applications of the kinetic models for different hydrogen storage alloys are also introduced.  相似文献   

19.
综述了近几年稀土-镁-镍基贮氢合金电极材料相结构与电化学性能等方面的研究进展。介绍了改善合金电化学性能的方法,包括合金组成的改进、热处理、表面处理、制备复合合金等方法。讨论了稀土-镁-镍基贮氢合金研究中的几个重要问题以及发展方向。  相似文献   

20.
中介尺度条件下的氢氧预混燃烧,其燃烧速率主要由化学反应速度决定。于是采用层流有限速率模型,运用详细氢氧19步基元反应化学动力学机理和动态网格数值方法,对中介尺度准气体动力循环活塞式热力发动机超高燃烧负荷率氢氧预混燃烧过程进行了模拟。研究表明:中介尺度移动边界微小封闭空间的氢氧预混燃烧具有稳定性;采用表面炽热点火形式的中介尺度准气体动力循环的活塞式内燃机,能够实现工质高温吸热、内能增加和对外做功的完整热力学过程;而循环周期、初始压力、相对燃空比等运行参数对移动边界微小封闭空间的氢氧燃烧过程具有复杂的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号