首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用一种经Al~(3+)改性后的骨胶(BG)作为改性剂,制备不同掺量的新型骨胶(Al-BG)改性沥青。通过布氏旋转黏度试验、动态剪切流变(DSR)试验和弯曲梁流变(BBR)试验,分析新型骨胶对沥青流变性能的影响。研究结果表明:新型骨胶能够提高基质沥青的黏度,增强其在荷载作用下的弹性恢复能力。复数模量的增加与相位角的减小,表明新型骨胶能够提高基质沥青的高温抗剪切变形性能。新型骨胶掺量为7.5%时,对基质沥青流变性能改善效果最为优异。  相似文献   

2.
通过添加胶粉和高黏剂对SBS改性沥青进行复合改性。采用基本物理指标研究高黏改性沥青的制备工艺;采用软化点差值法评价高黏改性沥青的热储存稳定性;采用动态剪切流变试验(DSR)研究高黏改性沥青的高温流变性能和中温抗疲劳性能;借助傅里叶红外光谱(FTIR)和差示扫描量热法(DSC)对高黏改性沥青的改性机理进行分析。基本物理试验结果表明:胶粉有助于提高改性沥青的高温性能,但对其低温性能有不利影响,高黏剂能够大幅度提高改性沥青的黏度,最佳的胶粉掺量和三种高黏剂的掺量分别为:10%、8%、7%、8%。离析试验结果表明:三种高黏改性沥青的热储存稳定性满足规范要求。DSR试验结果表明:胶粉和高黏剂有助于提高成品SBS沥青的高温性能和感温性能;短期老化后,其高温性能提高,但对感温性能产生不利影响;胶粉和高黏剂的掺入提高了沥青的中温抗疲劳性能。FTIR结果表明:胶粉和高黏剂与SBS沥青之间既存在物理共混,也有化学反应的发生。DSC结果表明:通过高黏复合改性后,沥青的高温稳定性得到有效提高。  相似文献   

3.
为使改性沥青混合料具有良好的性能,能够在一些极端环境下正常使用,选择纳米ZnO和(苯乙烯-乙烯-丁二烯-苯乙烯)SEBS两类改性剂复合对70号沥青进行改性。利用正交试验对复合改性沥青的制备方案进行优化,并通过布氏旋转黏度、针入度、延度、软化点和高低温流变等实验,对纳米ZnO、SEBS、纳米ZnO/SEBS改性沥青以及基质沥青的粘滞性、温度敏感性、高低温流变性能以及PG连续分级进行比较分析,以此确定最优配方。试验结果表明,纳米ZnO/SEBS复合改性沥青最优制备改性剂掺量为3%纳米ZnO+5%SEBS,最优制备方案为先加SEBS后加纳米ZnO;此掺量复合改性沥青的温度敏感性显著降低,低温抗裂性能以及PG连续分级的高低温服务温度范围均有明显改善,对沥青高温性能提升最为显著。  相似文献   

4.
为降低沥青混合料施工过程中大量的能源消耗和废气排放,研发了新型温拌沥青改性剂,基于布洛克菲尔德旋转黏度试验,确定了温拌剂降黏特性。采用动态剪切流变试验(DSR)试验研究了温拌剂掺量、温度等因素对沥青流变性能的影响规律。结果表明:温拌剂掺量大于1%时,沥青黏度降低约80%,与SBS改性沥青相比,在64~70℃范围内时,温拌改性沥青抗车辙因子提高幅度为28.6%~71.4%,温拌剂的加入不仅降低了沥青黏度,而且改善了沥青高温性能。  相似文献   

5.
以中海A H-70#基质沥青为基本原料,采用中东天然岩沥青与SBS改性剂复合改性制备高黏沥青.通过均匀设计的方法设计岩沥青与SBS改性剂的复配材料组成,并采用针入度试验、延度试验、软化点试验、60℃动力黏度试验、布氏黏度试验以及DSR试验对复合改性高黏沥青的性能进行测试.结果表明:针入度和延度受岩沥青掺比的控制影响较大;而软化点受SBS改性剂掺比的控制影响较大;复合掺量与60℃动力黏度、布氏黏度以及抗车辙因子均成正相关关系.基于试验分析,采用SPSS软件建立回归模型,运用MATLAB软件计算分析得到天然岩沥青与SBS改性剂的最佳复合掺配比例分别为:5.4%和6.4%.  相似文献   

6.
为进一步提升材料的黏结能力与耐久性,特研发HVA-H高黏改性剂,使用此种改性剂与SBS改性沥青在合理剪切工艺下,制备出一种高黏改性沥青。通过荧光显微镜观察HVA-H高黏改性剂掺量分别为4%、6%、8%、10%时高黏改性沥青的分散性,确定最佳掺量,并将其与试验室原有的高黏改剂和其它厂家高黏改性剂进行对比分析研究。结果表明:HVA-H高黏改性剂最佳掺量为8%,HVA-H高黏改性沥青高低温性能优于HVA高黏改性沥青和其它厂家高黏改性沥青;且拉伸柔量指标与BBR试验结果之间存在相关性,可精确评价改性沥青的低温性能;Carreau模型比Cross模型拟合精度更高,在实际应用中可通过Carreau模型拟合零剪切黏度,对研究改性沥青高温性能有较好的指导作用。  相似文献   

7.
为改善沥青的路用性能并兼顾环境效益,选择生物炭对沥青进行改性,采用高速剪切法制备不同掺量的生物炭改性沥青,通过沥青三大指标试验、60℃动力黏度试验、布氏旋转黏度试验(RV)、旋转薄膜烘箱老化试验(RTFOT)等对其进行性能评价。试验结果表明,生物炭可有效提高沥青材料的高温性能及温度稳定性,其掺量达到12.5%时改性效果为最佳;生物炭改性沥青的动力黏度和布氏黏度均随生物炭掺量的增加而不断增大,表明生物炭改性剂具有显著的增稠作用,可提高改性沥青的黏结及抗流动变形能力;不同生物炭掺量的残留针入度比均高于基质沥青的,软化点增量均小于基质沥青的,生物炭改性沥青的抗老化性能得以改善。此外,生物炭沥青的应用具有良好的环境效益和经济效益。  相似文献   

8.
为了探讨高岭土对温拌沥青的作用,制备了5种不同掺量的高岭土改性沥青试样,主要对高岭土对改性沥青黏度及温度敏感性的影响进行了研究,在控制变量剪切率、掺量的基础上进行不同温度下的布氏黏度试验,并且通过不同温标下的黏温指数(VTS)方法分析了高岭土掺量对沥青的温度敏感性影响。试验结果表明:掺量为11%的高岭土改性沥青黏度最大,温度敏感性最小,具有一定的改性效果;随着温度升高沥青黏度减小,同时利用Jamming理论分析,温度和剪切率的变化使得改性沥青的相态发生转变,可见当温度高于135℃时,高岭土改性沥青的黏度随剪切率增加而减小并且受剪切率影响逐渐变小。  相似文献   

9.
为研究胶粉复合改性高黏沥青复配体系的显著性影响程度及机理,选择废胎胶粉种类、废胎胶粉掺量、SBS掺量、补强剂掺量、增塑剂掺量5个试验变量制备复合改性高黏沥青。设计五因素四水平正交试验,通过极差分析研究各因素对改性沥青针入度、延度、软化点、黏韧性和60 ℃动力黏度5个技术指标的影响。结果表明:补强剂掺量对针入度影响最大,增塑剂次之;胶粉掺量对60 ℃动力黏度影响最大,与补强剂协同作用于软化点;SBS掺量对延度影响最大;粘韧性无明显规律。综合考虑各因素,得出胶粉合金添加剂的较优制备方案是:选择卡车轮胎胶粉,各物料以质量分数计,废胎胶粉:SBS:补强剂:增塑剂=100:24:10:19。较优制备方案下,通过双螺杆挤出工艺制备胶粉合金高黏添加剂,且掺量为25%时,废胎胶粉复合改性高黏沥青表现出优秀的高低温性能,沥青黏度和路用性能明显提升。  相似文献   

10.
为了进一步提升开级配沥青混合料的低温抗裂性能,选用改性剂制备不同类型高黏改性沥青并对其进行压力老化(PAV)试验模拟长期老化,通过针入度、延度和弯曲梁流变试验(BBR)对比分析高黏改性沥青低温性能,同时基于Burgers模型拟合分析其低温蠕变行为,综合评价高黏改性沥青的低温抗裂性能。结果表明:对比基质沥青,增黏剂可以显著降低沥青低温蠕变劲度且提高沥青蠕变速率,改善沥青的低温柔韧性能和应力松弛能力,有效改善沥青的低温抗裂性能;通过Burgers模型分析进一步证明了所采用的增黏剂可以有效改善沥青的低温性能,但增黏剂过量会对沥青低温性能产生负面影响,通过综合比选,增黏剂最佳掺量为2%;PAV老化后高黏改性沥青低温柔性增强,但应力松弛能力降低。  相似文献   

11.
为了制备一种全透式沥青路面专用高黏度改性沥青,采用自制改性粒子(SR)与SBS粒子为复配改性剂,对基质沥青进行复合改性。通过荧光显微照相、针入度试验、延度试验、软化点试验、薄膜老化试验、动力黏度试验及布氏黏度试验等,对自制高黏度改性沥青性能进行表征,并与SK90#基质沥青、橡胶沥青、SBS改性沥青进行性能对比。结果表明:各改性材料在基质沥青中分散良好,自制高黏度改性沥青中的SR粒子作为高弹嵌挤单元提高了沥青交联网状结构的稳定性;与基质沥青相比,改性沥青具有较高的软化点和延度,以及较低的针入度(25℃);自制高黏度改性沥青的动力黏度高达230kPa·s,明显高于橡胶沥青和SBS改性沥青;动态剪切流变试验(DSR))中自制高黏度改性沥青高温分级达到PG82℃,较SBS改性沥青和橡胶沥青提高1个等级,较基质沥青提高4个等级,高温变形可恢复性能最强;4种沥青的原样和薄膜老化后沥青中以自制高黏度改性沥青的车辙因子随温度变化最为缓慢,高温敏感性最弱,耐老化性能优异;弯曲梁流变试验(BBR)中,SBS改性沥青和自制高黏度改性沥青的低温分级均达到PG-18℃,较基质沥青和橡胶沥青高1个等级,但自制高黏度改性沥青的蠕变劲度较小,蠕变速率较大,具有更强的低温柔性。  相似文献   

12.
为了深入研究改性沥青的优化性能,提高沥青材料在高等级公路路面中的广泛应用,降低沥青混凝土路面建设成本。选用松香树脂作为改性剂,以松香树脂掺量质量占比分别为5%、8%、10%、12%、15%等5种比例制备沥青胶浆,对制备的沥青胶浆进行基本指标测定试验、标准黏度测定试验、动态剪切流变试验(DSR)、弯曲梁流变试验(BBR)。结果表明:选用松香树脂作为改性剂的沥青胶浆试件,当松香树脂质量占比为10%~12%时对沥青胶浆材料的抗剪强度、耐高温性能和抗车辙能力均有较大幅度的提升,为松香树脂改性沥青混凝土路用性能的可行性提供了参考。  相似文献   

13.
为获得性能优异的改性沥青混合料,选用苯乙烯-乙烯-丁二烯-苯乙烯(styrene ethylene butadiene styrene,SEBS)和橡胶粉对沥青进行复合改性,采用正交试验设计优化复合改性沥青的掺配方案,同时选用三大指标、布氏旋转黏度、短期老化模拟(RTFOT)等试验对复合改性沥青、橡胶改性沥青、SEBS改性沥青、基质沥青的黏滞性、高温稳定性、低温抗裂性、感温性及抗老化性进行对比分析,综合评价其路用性能.正交试验结果表明,SEBS、CR的最优复合掺量分别为5%和16%,最佳制备方案为SEBS和CR同时加入;采用本文方法制备的SEBS/CR复合改性沥青可降低沥青感温性能,改善低温抗裂性能和抗老化性能,对高温稳定性的改善效果尤为明显;此外需考虑目标需求及温差变化较大时复合改性沥青的掺配比例.  相似文献   

14.
为解决新疆沥青与SBS、胶粉相容性差,SBS对其难以改性等技术问题,提高新疆交通建设中废料利用水平,采用SBS、胶粉对克拉玛依(KLMY)、塔河(TH)调和沥青进行复合改性,制备了SBS/胶粉复合改性新疆调和沥青,优化其制备工艺,确定适用于新疆炎热地区及严寒地区的SBS/胶粉复合改性新疆沥青掺配方案;采用动态剪切流变(DSR)试验、多应力重复蠕变恢复(MSCR)试验、弯曲梁流变(BBR)试验、线性振幅扫描(LAS)试验、布氏旋转黏度试验,对比评价了SBS/胶粉复合改性新疆沥青、SBS改性沥青和橡胶改性沥青的高温流变性能、低温流变性能、疲劳性能和黏温特性。结果表明:优化后的SBS/胶粉复合改性新疆沥青制备工艺为沥青分2次剪切;适用于新疆严寒地区的复合改性沥青(SBS/CR-N)掺配方案为KLMY90∶TH60=2∶3、掺量15%胶粉(质量分数,下同)、3%SBS、2%PR-1助剂、4%相容剂SH、0.12%稳定剂SWD;适用于新疆炎热地区的复合改性沥青(SBS/CR-S)掺配方案为KLMY90∶TH60=2∶3、15%胶粉、3.5%SBS、2%PR-1助剂、3%相容剂SH、0.12%稳定...  相似文献   

15.
基于微观和流变分析的岩沥青改性沥青性能评价   总被引:3,自引:0,他引:3  
采用埃索70#沥青,以不同掺量的青川天然岩沥青为改性剂制备岩沥青改性沥青.通过红外光谱和差示扫描热量法(DSC)对天然岩沥青及岩沥青改性沥青的微观结构进行分析,研究其改性机理.采用SHRP试验对岩沥青改性沥青的高温、低温和抗疲劳性能进行研究,并对不同掺量的岩沥青改性沥青进行了SHRP-PG分级.微观研究证明,天然岩沥青沥青质的杂原子基团含量高,芳香性和极性强.经过改性,基质沥青的微观结构发生了变化,岩沥青改性沥青的感温性降低,温度稳定性和水稳定性得到增强.流变特性分析表明岩沥青改性沥青的黏度明显提高,高温稳定性和抗疲劳性得到显著改善,可用于非极端低温的环境.  相似文献   

16.
为研究改性剂掺量对苯乙烯-丁二烯-苯乙烯嵌段共聚物(styrene-butadiene-styrene block copolymer,SBS)-改性胶粉(modified rubber powder,MCR)复合改性沥青路用性能的影响,通过常规流变学试验方法,定性对比研究了SBS和MCR改性剂掺量对SBS-MCR复合改性沥青黏弹性的影响,量化分析了沥青胶结料路用性能的变化规律;通过多重应力蠕变试验,对比研究了不同改性剂掺量下沥青胶结料高温抗车辙性能的提升效果和差异;基于低温弯曲蠕变试验对8种沥青胶结料的蠕变劲度模量和蠕变速率进行对比研究,分析比较了材料在低温柔性和应力松弛性方面的差异.结果表明:不同改性剂掺量的SBS-MCR复合改性沥青虽然高温PG分级相同,但其抵抗高温变形的能力却可能存在差异;SBS和MCR改性剂对沥青胶结料劲度模量的提升效果相近;8种SBS-MCR复合改性沥青胶结料低温等级为-24℃,低温路用性能良好;最终推荐改性剂的合理掺量为4%SBS+11%MCR.  相似文献   

17.
对苯乙烯-丁二烯嵌段共聚物(SBS)改进沥青性能进行了实验研究.用Brook fieled旋转黏度计测定了SBS对两种沥青进行改性后样品的系列黏度.实验发现SBS在含芳烃较高的沥青中分散性能好,增黏效果显著,尤其是当其质量分数大于3%后芳烃含量较高的沥青黏度增大幅度较大;SBS对沥青的针入度、软化点、延度等物理性能的影响也非常明显.通过对SBS改性沥青性能的机理分析,表明SBS在沥青中的分散性是提高改性沥青性能的重要因素.适当添加芳烃有助于提高SBS改性沥青的物理性能.  相似文献   

18.
采用动态剪切流变、重复蠕变和弯曲梁流变等试验分别对多聚磷酸改性沥青、聚合物改性沥青以及聚合物复配多聚磷酸改性沥青在高、低温状态下的流变特性进行了系统研究.结果表明,多聚磷酸能够改善基质沥青和聚合物改性沥青的高低温性能;多聚磷酸与苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)改性剂在改善沥青高温性能机制上存在明显不同,多聚磷酸的掺入显著增加了沥青的黏度,而对沥青的弹性变形恢复能力贡献较小,而SBS改性剂可大幅度提高沥青的弹性变形恢复能力.采用核磁共振(NMR)试验对多聚磷酸改性沥青的改性机理进行了初步分析,发现多聚磷酸与沥青发生了接枝、磷酸酯化和环化反应,从而改变了沥青的碳链结构和化学结构,宏观上使沥青变得更加黏稠.  相似文献   

19.
为改善煤直接液化残渣(DCLR)改性沥青的低温性能,利用苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、橡胶粉、3种增塑剂(马来酸二辛酯(DOM)、邻苯二甲酸二辛酯(DOP)和水性丙烯酸树脂(WAR))等方法对DCLR改性沥青进行二次复合改性,并进行5℃延度、弯曲梁流变(BBR)以及电镜扫描试验。结果表明:采用SBS(掺量(质量分数)低于3%)或橡胶粉(掺量低于15%)单一改性剂可以改善DCLR改性沥青的低温性能,如果SBS或橡胶粉掺量过高,反而起不到改善作用;采用复合改性剂(SBS和橡胶粉)对DCLR改性沥青的低温性能改善效果较好,其中采用2%SBS和15%橡胶粉复合改性剂时,DCLR改性沥青的性能基本上能满足SBS改性沥青I-D的技术要求,较单一改性剂对DCLR改性沥青低温性能改善提升约1倍;3种增塑剂中WAR对DCLR改性沥青的低温改善效果最差,DOP次之,DOM最好,其中3%DOM对DCLR改性沥青二次复合改性后的性能也能满足SBS改性沥青I-D的技术要求;3%DOM对DCLR改性沥青二次复合改性的制备工艺相对于复合改性剂(2%SBS和15%橡胶粉)操作简单,推荐利用3%DOM来提高DCLR改性沥青的低温性能。  相似文献   

20.
针对西部高原地区年平均气温低、紫外线辐射强导致沥青路面极易老化从而产生一系列路面病害的问题,选取纳米TiO_2、MMT、SBR三种改性剂制备复合改性沥青。为确定改性剂的适宜掺量,通过响应曲面法结合三大指标试验分析三种改性剂的改性效果,并利用动态剪切流变试验、低温弯曲梁试验对不同纳米TiO_2、MMT掺量的改性沥青进行抗老化性能评价从而得到基于沥青抗老化性能的改性剂最佳掺量。结果表明改性剂对三大指标的影响因子排序,即针入度和延度:SBR纳米TiO_2纳米MMT,软化点:纳米MMT纳米TiO_2SBR,并通过预测公式确定最佳掺量为4%SBR+1.5%纳米TiO_2+4%纳米MMT;通过对改性沥青抗老化评价得到的纳米TiO_2、MMT改性剂的最佳掺量与模型结果几乎一致,分别为1%、4%,最佳掺量下的纳米TiO_2、MMT可使基质沥青抗老化性能分别提升60%和30%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号