首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究匝道车道数变化过渡段长度和渐变率,参照前人研究成果分析匝道车道数变化过渡段的行车特性,提出利用换道模型研究这2个设计指标的方法。首先建立满足过渡段车辆行驶特征的等速偏移余弦曲线换道模型,并应用德国UMRR交通管理传感器的实测数据证明该换道模型的合理性;然后对该模型中最大横向加速度和最大横向加速度变化率2个关键参数进行深入研究;最后依据该模型,提出基于设计速度的匝道车道数变化过渡段长度和渐变率2个设计指标的推荐值,采用CarSim和TruckSim汽车动力学仿真软件分别建立了小汽车和大货车的仿真模型,利用该模型对提出的推荐值和《公路立体交叉设计细则》(JTG/T D21—2014)(下文简称规范)推荐值进行了对比验证。研究结果表明:基于等速偏移余弦曲线换道模型提出的匝道车道数变化过渡段设计指标,能保证车辆在过渡段沿特定最优轨迹安全、舒适行驶;规范推荐值仅能满足设计速度40km/h车辆的换道行为,此时的货车最大横向力系数为0.142;当设计速度在40km/h以下,横向力系数又远低于允许值,过度段长度浪费;当设计速度大于40km/h时,车辆的横向力系数已经超限,速度达到80km/h时,横向力系数超限达到315%,车辆在这种状态下行驶不安全。鉴于此,可以推测规范推荐值仅能满足设计速度40km/h的车辆行驶,高于和低于此速度时,匝道车道数变化过渡段的指标存在不合理性。  相似文献   

2.
通过Simi-Motion软件提取高速公路出口路段无人机航拍视频的左换道(LLC)和右换道(RLC)车辆轨迹数据,基于双曲正切函数建立了新的车辆换道轨迹模型,将新模型与传统的样条曲线函数、五次多项式、正弦函数轨迹模型进行对比分析.通过对模型参数的敏感性分析、拟合优度检验、CarSim仿真分析证明了新模型的特点和适用性.研究表明:相比于传统的换道轨迹模型,新模型具有较高的拟合精度,且模型中各参数均具有实际物理意义,模型中参数τ值表征驾驶员出口路段换道行为的紧急程度,该参数的存在使得新模型具有普适性和应用价值.利用这一特性,该模型可以生成特定驾驶环境的车辆换道轨迹,有助于与换道有关的道路几何指标研究和驾驶员辅助系统(ADAS)的开发和应用.  相似文献   

3.
换道轨迹规划是无人驾驶车辆核心功能模块之一。传统换道轨迹模型研究场景简单,较少考虑车辆间的相互影响。为此,综合考虑换道过程中车辆之间的相互作用,结合车辆运动特性,引入换道安全控制参量——车间间距,建立考虑前方障碍车辆的多项式协同换道轨迹模型。基于换道安全考虑,采用矩形构建车辆模型分析换道过程中车辆的几何关系。以换道车辆的几何特征角点与前方障碍车辆车尾的相对位置关系建立安全约束方程。与现有多车换道轨迹规划方法相比,轨迹方程形式简单,求解方便,换道安全控制参量物理意义直观明确。仿真实验验证了换道轨迹模型的可行性与合理性,研究结果为无人驾驶多车安全换道轨迹规划研究提供探索性研究。  相似文献   

4.
换道轨迹规划是无人驾驶车辆核心功能模块之一。传统换道轨迹模型研究场景简单,较少考虑车辆间的相互影响。为此,综合考虑换道过程中车辆之间的相互作用,结合车辆运动特性,引入换道安全控制参量——车间间距,建立考虑前方障碍车辆的多项式协同换道轨迹模型。基于换道安全考虑,采用矩形构建车辆模型分析换道过程中车辆的几何关系。以换道车辆的几何特征角点与前方障碍车辆车尾的相对位置关系建立安全约束方程。与现有多车换道轨迹规划方法相比,轨迹方程形式简单,求解方便,换道安全控制参量物理意义直观明确。仿真实验验证了换道轨迹模型的可行性与合理性,研究结果为无人驾驶多车安全换道轨迹规划研究提供探索性研究。  相似文献   

5.
为研究辅助车道长度确定的基本原理和合理长度,采用无人机航拍视频及YOLOv3目标检测算法提取双车道出口辅助车道路段车辆的原始轨迹数据,通过卡尔曼滤波和Frenet坐标系转换,得到了车辆微观换道特性和速度分布特征。以修正双曲正切函数换道模型拟合换道轨迹,左、右换道拟合优度分别为97.48 %、97.62 %。根据路段车辆运行和微观换道特性,建立了双车道出口辅助车道长度计算模型,将辅助车道划分为右换道段、反应段、等待段和左换道段4个组成部分。研究表明:出口辅助车道长度中最主要的影响因素是换道长度,其与行驶速度正相关,和《路线规范》相比,明确了辅助车道最小长度的计算原理,界定了辅助车道的范围,为设计中灵活运用提供了参考。  相似文献   

6.
【目的】提高网联高速出口匝道路段通行效率,降低交通事故风险,保障分流车辆通行秩序。【方法】针对出口匝道上游智能网联车辆(connected automated vehicle,CAV)的换道行为所导致的交通紊乱问题,提出一种协同换道策略。兼顾通行效率和舒适度,以研究时段内所有CAV平均速度、平均加速度变化率的加权和最小为目标,以速度、加速度、加速度振动、换道起点与分流点的纵向距离等为约束,构建CAV动态速度协同优化模型,有计划地优化每个时段每辆CAV的速度。采用Gurobi优化器求解协同控制模型,并使用SUMO软件建立仿真场景评估协同控制效果。【结果】与无控制情形相比,所提出的协同方法在不同总流量和分流比例下能使车辆平均速度最高提高17.7%,总延误降低75.9%以上,平均加速度变化率改善9.3%以上;当分流比例一定时,一定总流量情况下,总流量越高平均速度、平均加速度变化率改善效果越好;在安全换道所要求的最小纵向距离约束下,出口匝道路段通行效率最高。【结论】在不同总流量和分流比例下,协同策略可为换道车辆创造换道间隙,改善通行效率,提高乘客舒适度。  相似文献   

7.
文章在换道过程分析研究的基础上,将换道轨迹规划过程分为换道方案生成阶段、变速调整阶段和匀速换入阶段3个阶段;将局部动态规划变成拟静态规划,考虑了无人车机器的反应时间,使实际换道执行时间更加准确。该文在车辆运动学约束和G2连续要求下控制车辆换道轨迹,在变速调整阶段控制主车加速度使得主车到达换道速度和换入位置,在匀速换入阶段运用五次多项式换道轨迹规划方法规划匀速换入的轨迹。通过仿真分析,发现该文提出的换道轨迹满足车辆实际运行要求,在动态仿真过程中证明了换道轨迹安全可行;与传统五次多项式规划轨迹比较,该文提出的换道轨迹规划过程可以提高换道成功率。  相似文献   

8.
针对自动驾驶汽车在局部轨迹规划上对车辆操纵稳定性考虑不足、对车辆模型过度简化和缺少对车辆舒适性客观评价的问题,建立了考虑车辆操纵稳定性的车辆三自由度模型,模拟自动驾驶汽车换道场景,根据输入车轮转角得到输出的换道轨迹,运算得到车辆换道行驶参数化方程和行驶轨迹特征.运用BP神经网络对行驶轨迹特征进行识别,得到自动驾驶汽车换道持续时间和横向偏移距离所对应的车轮转角变化关系.在不同换道车速下,根据不同换道持续时间和横向偏移距离,输入车轮转角得到换道优化轨迹簇和操纵稳定性参数.在只考虑行驶效率和安全的常规轨迹优化方法的基础上,构建轨迹综合优化目标函数,考虑表征车辆换道过程舒适性和操纵稳定性的(横摆、侧倾、侧向)加速度变化率均值,提出一种基于行驶效率、安全性、舒适性和操纵稳定性的轨迹综合优化方法.对轨迹综合优化目标函数进行求解得到最优换道行驶轨迹,联合仿真结果表明该方法优于常规轨迹优化方法且舒适性、操纵稳定性改善达20%以上.  相似文献   

9.
现有的最小安全距离换道可行性检验模型通常默认周围车辆处于车道保持状态,且只考虑本车道和目标车道车辆对本车换道的影响,未讨论周围车辆处于车道变换状态或者相间车道车辆变道的影响。为建立更加安全、全面的换道可行性检验模型,实现安全自主换道,分析了车道变换的逻辑架构,重点研究了一种全面考虑周围(包括相邻车道和相间车道)车辆处于车道变换和车道保持状态的改善型换道可行性检验模型,保障车辆换道过程中不与周围车辆发生碰撞。使用基于模型预测控制(MPC)方法实现换道轨迹跟踪控制,设计仿真对比试验,通过PreScan和Simulink联合仿真对所研究的模型和方法进行验证。仿真结果表明提出的改善型换道可行性检验模型比对比模型更加安全高效,MPC控制方法的横向轨迹跟踪误差在1 cm以内,具有很高的跟踪精度。  相似文献   

10.
基于中国大型实车路试实验(China FOT)项目,从679.3km的自然驾驶数据中提取出了70例匝道区域通行过程.统计表明,加速车道汇入点位置主要分布于加速车道的中间偏前部分.提出了指数型的车辆汇入模型.通过研究将分流区变道完成点设置在减速车道出现以前,最晚变道开始点分别设为距离减速车道200m、300m和400m,随后提出了自动驾驶汽车分流变道策略.最后统计了匝道区域违章行为,匝道基本路段易发生超速,偶发生超车,匝道出入口易发生连续变道,偶发生压实线变道.  相似文献   

11.
研究能够满足出口车速平稳过渡的逐级限速方案,对提高出口区域车辆平稳运行及安全提升有重要意义。利用无人机采集高速公路出口车辆运行参数,分析出口车辆运行特征,考虑驾驶员对相邻限速标志的认知反应,构建了连续限速标志设置间距计算模型,建立了高速公路出口不同级别的限速方案,利用驾驶模拟试验对设计的不同限速方案进行分析及评价。模型的计算结果显示,二级限速方案中,限速值为60-40km/h的限速标志间距为160m;三级限速方案中,限速值为80-60-40km/h的限速标志间距分别为:300,80m,限速值为90-60-40km/h的限速标志间距分别为300,85m;四级限速方案中,限速值为100-80-60-40km/h的限速标志间距分别为295,160,80m。利用驾驶模拟器对模型结果进行验证,试验结果表明:逐级限速方案的平均减速度指标小于1.3 m/s2,均在驾驶舒适性阈值内;随着限速级数增加,车辆离散幅度显著降低,表明逐级限速方案对出口车辆运行速度有明显管控效果;四级限速方案可使在分流鼻端车速标准差、平均减速度、V85分别控制在5.23km/h、0.52m/s2、54km/h左右,极大了满足车速平稳过渡要求。可见,借助模型定量优化的逐级限速方案可以显著提高出口车速过渡的平稳性和安全性。  相似文献   

12.
为研究快速路入口匝道车辆的汇入行为,首先对交织区全范围的汇入位置进行采集,然后通过聚类分析将汇入行为分为前段汇入、中段汇入、末段汇入3种.采用5种分布模型对各类行为的汇入位置进行拟合,通过最大似然估计法确定模型参数并进行Kolmogorov-Smirnov拟合优度检验,发现前段汇入符合Johnson SB模型,中段汇入符合Log-Logistic模型,末段汇入符合Gen.extreme.value模型.最后,建立汇入位置分布与主路外侧车道密度、匝道车辆合并速度间的关系模型.敏感性分析结果表明,同一类别的汇入位置分布受密度、速度的影响显著.  相似文献   

13.
为了确定高速公路互通式立交单车道入口小客车运行速度特征,计算小客车在高速公路互通式立交入口处的运行速度模型,确保车辆在衔接段运行速度之间的协调,使车辆安全运行,在分析高速公路互通立交单车道入口处小客车运行速度实测数据基础上,得出小客车在入口处运行规律。使用链式开普勒雷达测速仪对入口处小客车速度进行实时采集,选取8条匝道特征点(合流鼻、合流点以及加速车道终点)处自由流状态下小客车速度作为分析样本,采用K-S检验对所取样本进行正态分布检验,在满足检验要求并分析三角区段和加速换道段速度及加速度特性后,确定自变量参数。最后利用SPSS软件进行回归分析,分别建立了小客车在合流点及加速车道终点处运行速度预测模型,并用4条匝道对模型进行了验证。研究结果表明:合流点处车辆运行速度与合流鼻速度及三角区段长度呈正相关,与平曲线半径倒数呈负相关;加速车道终点处运行速度与合流鼻速度及加速换道段长度呈正相关,与平曲线半径倒数呈负相关;模型通过了回归等式及回归参数显著性和平均相对误差检验,模型预测值与实测值相对误差平均值均小于10%,所建模型满足精度要求。研究结果对《公路项目安全性评价规范》(JTG B05—2015)中车辆运行速度相关规定进行补充说明,为高速公路安全性评价及设计提供理论支撑与参考。  相似文献   

14.
针对现有跟驰与换道模型没有同时考虑驾驶者决策过程中前瞻性的问题,在全速差跟驰模型及概率式换道模型的基础上,提出了一种考虑双前导车的跟驰与换道联合模型,并给出了模型参数的辨识方法.应用美国NGSIM开源交通流数据库中美国I80高速公路Emeryville路段的车辆行驶轨迹数据,分别采用轨迹标定法和极大似然法对所提模型中的跟驰模型和换道模型进行了参数标定,并参照NGSIM数据库中的交通环境设计了数值仿真实验.仿真实验结果显示,交通流平均速度、车速离散度与实测数据的误差均在5.0%左右,换道次数和换道率的误差均小于20%.所提出的模型能够准确描述多车道高速公路交通流的微观特性,适合用于模拟实际多车道高速公路交通流的动态特征.  相似文献   

15.
城市快速路匝道间距设计是路线设计的重要内容,匝道间距大小和匝道数量对快速路交通流有决定性的影响。当城市快速路处于不间断大交通流量时,车流呈现出较为明显的波动现象。根据城市快速路交通流的这一特点,应用车流波理论,分析了上下匝道间合流区和分流区的车流波特点,进一步建立了出口-入口组合型匝道间距比例数学模型。认为快速路匝道设计不但要考虑间距大小,相邻匝道作为一个整体,还应研究相互之间的影响。实例表明,当匝道间距比例不能满足数学模型时,快速路容易发生交通拥堵,服务水平较低,抗干扰能力较差。  相似文献   

16.
决策与规划是实现自动驾驶的关键技术,针对自动驾驶货车在紧急转向避障时需要考虑换道时目标车道的安全性和规划出最优避障轨迹的问题,采用将换道时左右车道上的车辆与自车的相对距离和换道的最小安全距离的差值分别建立模糊关系的方法,通过比较模糊规则推理设计的安全值,选择更安全的车道进行转向避障,为了迅速规划出最优避障轨迹,采用三阶贝塞尔曲线,通过设计4个控制点坐标形成避障曲线,为了防止转向时横向加速度过大导致货车发生侧翻和速度过快与前车发生碰撞,设计车辆的稳定性边界和碰撞边界对控制点进行约束,使用MATLAB中的函数求解出不同车速下的最优换道轨迹,最后使用仿真软件进行仿真验证,结果表明设计出的避障决策和轨迹规划可以安全、有效地避开障碍。  相似文献   

17.
为优化城市快速路出口影响区的交通组织,降低出匝车辆的换道风险,提高交通运行的安全性和高效性,依托上海自然驾驶实验数据,提取城市快速路出口影响区出匝车辆的轨迹数据样本,建立出口影响区换道风险评价方法及分级标准;针对三种常见的快速路出口,考虑人、车和路域环境方面的综合因素,利用二项Logistic模型构建换道风险模型,分析不同因素对换道风险的影响程度,以及一定条件下车辆存在换道风险的概率;在此基础上,根据出口影响区的车辆运行信息和换道风险模型,控制换道风险在合理范围内,得到出匝车辆的合理(最迟)换道位置,并提出相应的城市快速路出口影响区的车道管理方法。  相似文献   

18.
针对道路交通系统中换道行为产生的干扰作用,提出了基于车间通信的两阶段车辆换道策略。基于NGSIM数据对普通车辆换道行为进行分析,建立两阶段换道模型。模型第一阶段考虑影响换道的六个影响因素,构建二元Logit模型,估计车辆换道概率;第二阶段利用安全条件确定车辆换道行为是否实施。对于互联车,在换道模型第一阶段考虑更加精确的实时交通状态信息,设计了对应的换道策略。通过数值模拟,分析不同换道策略对交通流的影响。结果表明,基于车间通信的换道模型考虑了本道和目标车道更多车辆的速度及位置信息,效用函数使得车辆的换道行为考虑了更大范围内平均车速和平均车距的因素,而不仅仅局限于最近邻范围内交通状态的局部效用,从而抑制了换道的频率及其产生的干扰,增加了道路交通系统的通行效率。  相似文献   

19.
车辆换道过程对交通安全和交通拥堵有重要影响,为了获得不同驾驶人的换道行为特性,考虑了车辆换道过程中驾驶人的因素,利用SPSS对问卷调查的结果进行主成分分析,采用K-均值聚类方法对驾驶风格进行量化,将驾驶人分为激进型和保守型两种类型,再利用时间对数模型提出了驾驶风格值变量。对两组类型驾驶人进行换道试验,获得了不同风格驾驶人换道时间和换道纵向距离等换道特性的试验数据,并建立了考虑驾驶风格的车辆换道时间预测模型;基于预测的换道时间以及换道车辆转向角与驾驶风格值变量、速度之间的关系,结合车辆运动学模型,建立了车辆换道纵向距离预测模型,并将预测结果与实际换道数据进行了对比分析,结果表明,本研究提出的预测模型准确率较高。研究结果表明,激进型驾驶人在换道过程中其行为较为激进,换道时间较短,换道距离较短;所建立的预测模型可以较准确地预测和解释驾驶人的换道行为。  相似文献   

20.
针对智能车辆换道轨迹中存在的侧向加速度过大或轨迹曲率不连续的问题,在对传统车辆换道模型进行比较分析的基础上,提出基于五次多项式换道模型的轨迹规划方法.基于换道轨迹安全性和效率性的要求,以车辆换道时的侧向加速度、换道时间和车辆横摆角速度为优化变量,设计目标函数.通过求解目标函数得到最优换道时间,进而得到最优换道轨迹.对等速偏移+正弦函数换道模型和五次多项式换道模型进行仿真对比.结果表明:利用五次多项式换道模型的轨迹规划方法,当路面附着系数为0.2时,侧向加速度最大值为0.45 m/s2,轨迹的曲率最大值为2.02×10-3 m-1;路面附着系数为0.6时,侧向加速度最大值为0.70 m/s2,轨迹的曲率最大值为1.12×10-3 m-1;路面附着系数为0.8时,侧向加速度最大值为0.81 m/s2,轨迹的曲率最大值为0.90×10-3 m-1,均小于等速偏移+正弦函数换道模型轨迹曲线的侧向加速...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号