首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
随着电动汽车的普及,电动汽车的无线充电技术受到了广泛的关注.磁耦合谐振式无线传输系统的传输功率大,传输距离适中,因此磁耦合谐振式无线充电技术普遍应用于电动汽车无线充电.磁耦合谐振式无线充电系统可视为松耦合变压器,系统的原、副边线圈之间存在较大的漏感,需要添加相应的补偿拓扑来提升系统的功率和传输效率.对SS型补偿拓扑进行分析,并通过Matlab软件对其进行仿真,分析在不同的负载、电感和频率下系统的输出功率、传输效率的改变.结果显示SS型补偿拓扑的磁耦合谐振式无线传输系统可以承受较大范围的频率波动,输出功率和传输效率也较高,表明该拓扑结构适用于电动汽车无线充电系统中.  相似文献   

2.
阐述了反激变换器次级谐振的来源以及对开关管的影响,给出了高压输出整流二极管串联均压电容的选取原则.实验表明:次级漏感与次级电容会形成LC谐振,如果次级漏感及电容取值不合适,则次级谐振的能量会通过变压器耦合回初级,导致开关管出现负向电流及电压尖峰.次级均压电容的选择应该保证均压效果良好的情况下越小越好.  相似文献   

3.
介绍一种采用移相控制的串联谐振高压开关电源原理,并对此电路进行了理论分析.采用四组相同电路进行互差45°分时叠加控制,以提高谐波频率.实验表明,本电源利用变压器的漏感参加谐振,可减小分布参数的影响,并实现了恒频控制和软开关特性,与常用的串联谐振电路相比该电路谐振电流峰值要小得多.多模块串联工作,可实现冗余设计以提高整机的可靠性.在工作条件恶劣的X射线探伤中具有广阔的应用前景.该方案广泛适用于高压、大功率、负载变化大的电源.  相似文献   

4.
新型无接触感应耦合电能传输技术研究综述   总被引:1,自引:0,他引:1  
阐述了无接触感应耦合电能传输技术的工作原理,给出了感应耦合电能传输技术的基本定义.对松耦合变压器的典型物理结构进行了分析与比较,对无接触感应耦合电能传输系统主电路拓扑结构进行了深入研究,得出了系统在不同结构下的等效电路,推导了不同漏感补偿拓扑下的补偿参数.分析了无接触感应耦合电能传输系统中高频逆变器结构及性能,并对系统的功率传输及控制情况进行了分析.结合目前无接触感应耦合电能传输技术的研究现状与不足,探讨了无接触感应耦合电能传输技术的发展趋势与研究方向.  相似文献   

5.
研制的电梯轿厢无接触式电能传输装置采用磁耦合原理实现电能的无接触传输,可避免传统供电方式中轿厢的随行电缆疲劳破损的弊病.按楼层电站式的无接触取电方案,确保了无接触能源传输系统的绿色和环保,可避免高频导轨磁场裸露所引起的污染和隐患.静止式盘型可分离变压器的原、副边线圈串联了谐振电容以消除其漏感,使得在谐振频率点附近保持了较高的电压增益和功率传输能力.馈电部件和受电部件中均引入了闭环控制策略,使部件工作在最佳状态.在装置的传输功率超过300 W、无接触距离10~15mm的情况下,其传输效率达到了84%.  相似文献   

6.
磁耦合谐振式无线充电技术是电动汽车充电领域新的发展方向,与强耦合感应式无线充电技术相比,磁耦合谐振式无线充电方式传输距离更远,无辐射污染,穿透性强。然而,在定距离串并磁耦合谐振式无线充电装置中,当发射线圈与接收线圈的距离由于某种原因发生变化时,原方和副方的谐振频率不一致,需要实时调整补偿电容,才能保证工作在当前距离下的最大效率。在分析前述问题的基础上,提出了一种基于PWM控制可调电感补偿方案,并通过实验验证了该方法能在一定距离范围内有效提高系统在变距离中的传输效率。  相似文献   

7.
磁耦合谐振式无线充电技术是电动汽车充电领域新的发展方向,与强耦合感应式无线充电技术相比,磁耦合谐振式无线充电方式传输距离更远、无辐射污染、穿透性强。然而,在定距离串并磁耦合谐振式无线充电装置中,当发射线圈与接收线圈的距离由于某种原因发生变化时,原方和副方的谐振频率不一致,需要实时调整补偿电容,才能保证工作在当前距离下的最大效率。在分析前述问题的基础上,提出了一种基于脉宽调变(pluse-width modulation,PWM)控制可调电感补偿方案;并通过实验验证了该方法能在一定距离范围内,有效地提高系统在变距离中的传输效率。  相似文献   

8.
文章对感应加热电源结构分析得到了串联谐振感应加热及电路的直流侧采用不控整流相对于并联谐振的优点,并对调功电路进行分析,运用先进的神经网络控制对其控制,并进行仿真。  相似文献   

9.
为了提高非接触感应耦合电能传输系统的可靠性,提出了一种基于E类功率放大器的拓扑结构.将发射线圈和接收线圈的耦合电感进行等效变换,把发射线圈的漏感作为E类功率放大器谐振单元,把励磁电感作为折算后负载电阻的匹配电感.在电能非接触传输的同时实现了阻抗变换,把等效负载电阻限制在一定的范围内.提出的拓扑结构简单,无需额外的补偿网络.并且负载电阻变化时,均能满足E类功率放大器的零电压软开关条件.仿真和实验结果验证了新拓扑结构电路的可行性.  相似文献   

10.
电感式磨损颗粒在线监测传感器的研究所面临的主要瓶颈是传感器灵敏度与孔径之间存在矛盾,灵敏度较高的传感器一般采用微流道结构(孔径1mm),最大允许流量小;而大孔径的传感器其灵敏度较低.为满足重型机械磨损状态在线监测的需求,研究了大孔径(7mm)的电感式磨粒监测传感器灵敏度提高方法.提出使传感器工作于全谐振状态,其中激励线圈工作于并联谐振状态,感应线圈工作于串联谐振状态,共同增强颗粒引起的传感器输出感应电动势.检测机理上建立了交变磁场中金属颗粒对磁场的扰动模型,考虑了颗粒在交变磁场中的涡流效应,提高了模型的实用性.实验表明谐振原理极大地提高了传感器的灵敏度,实现了直径75μm铁磁性颗粒和220μm非铁磁性颗粒的有效检测,初步满足了重型机械设备初期异常磨损阶段的在线监测需求.  相似文献   

11.
针对电动汽车无线充电线圈的相关特性,提出了耦合谐振电路结合 Maxwell 软件建模的方法对 其进行分析;电动汽车用无线充电系统的互感线圈是实现无线充电的重要模块,对其进行特性研究有助于实 际生产中线圈的设计和优化。 为此,首先分析电动汽车用无线充电技术,并建立耦合谐振电路的等效模型进 行公式推导,进而通过 Matlab 仿真研究线圈互感系数对系统输出功率和传输效率的影响。 然后在 Maxwell 软件中搭建互感线圈的仿真模型,依次改变线圈的匝数、水平偏移程度和垂直距离进行仿真实验分析;仿真 得到线圈在不同互感系数下系统输出功率和传输效率线圈的变化情况和磁感应强度分布图、耦合系数变化 折线图。 根据仿真结果对线圈特性进行分析,最后得出随着互感系数的增加系统输出功率先增后减,传输效 率不断增加。 以及在线圈匝数减小线圈水平偏移程度以及垂直距离不断变大的情况下,线圈的耦合系数不 断降低,且降低幅度变大的线圈特性。  相似文献   

12.
基于风光互补发电无线电能传输系统的研究与设计*   总被引:2,自引:1,他引:1  
风光互补发电系统作为一种绿色能源可独立对外部供电,无线电能传输(Wireless Power Transfer)技术又提供了一种方便快捷的能量传输方式,本文结合两者的优点,将风光互补发电系统的输出作为WPT谐振电路的输入端,利用无线电能传输技术对负载供电,利用了绿色能源的同时又能节约电力运输成本。分析了磁耦合感应与磁耦合谐振之间的联系以及平面线圈频率分裂的相关因素,针对目前小型平面谐振无线充电设备随发射端和接收端距离的变化而产生传输波动的问题,在发射端采用XKT-408集成电路进行自动频率锁定,在发生频率分裂时调整线圈偏移角度可削弱两线圈的互感系数来抑制频率分裂现象,提高了接收线圈峰值电压。最后搭建了小光互补无线能量传输系统,在径向距离50mm处可成功对负载充电,该模型为基于风光互补发电无线充电系统的应用提供了参考。  相似文献   

13.
针对磁耦合谐振式无线电能传输(magnetic coupled resonant wireless power transfer, WCR-MPT)中铁氧体屏蔽材料的设计和选取没有明确的指导方法,且铁氧体屏蔽材料的添加直接影响系统的传输性能,利用电路理论和麦克斯韦方程组进行数学建模,在Maxwell仿真平台上搭建了一个带有铁氧体屏蔽材料的磁耦合谐振式无线电能传输装置,并对铁氧体屏蔽材料添加之后线圈之间的互感和耦合系数、线圈本身的电阻和品质因数的影响进行了分析.最后,搭建硬件电路进行实验,探究不同覆盖面积、距离、形状下的铁氧体屏蔽材料对系统传输效率的影响.结果表明只在接收端全屏蔽且紧靠接收线圈时可以有效提高系统的传输效率.  相似文献   

14.
为提高电动汽车无线充电系统耦合能力以增强系统的传输效率, 总结了现有的无线电能传输(WPT: Wireless Power Transmission)方式, 分析了基于磁感应耦合电能传输(ICPT: Inductive Coupled Power Transfer)技 术的电动汽车无线充电系统的工作原理, 建立了带有磁芯的 ICPT 系统互感计算模型, 对系统互感与磁芯属性、 线圈属性、 轴偏移距离的关系以及不同结构松耦合变压器的磁屏蔽效果进行了仿真分析。 结果表明, 磁芯属性 对系统互感的影响有上限, 而线圈属性对系统互感的影响无上限, 发射端摆放条形磁芯且接收端摆放圆盘形磁 芯的 ICPT 系统能满足电动汽车无线充电系统的电源需求和电磁屏蔽要求。  相似文献   

15.
非线性电阻电感型RLC串联电路主共振分析   总被引:2,自引:0,他引:2  
为了研究非线性电阻电感型RLC串联电路的非线性振动,应用拉格朗日一麦克斯韦方程建立受简谐激励的具有电阻和电感非线性RLC电路的数学模型.根据非线性振动的多尺度法,得到系统满足主共振条件的一次近似解以及对应的定常解.对其进行数值计算,分析系统参数对响应曲线的影响.结果表明:增大极板面积,响应曲线的振幅和共振区变大;增大极板间距、电感非线性系数和电阻,响应曲线的振幅和共振区变小.非线性电感和电阻可以抑制电量的振动.系统的固有频率随极板间距增大而增大,随极板面积和电感线性系数的增大而减小.  相似文献   

16.
小功率磁耦合谐振式无线电能传输频率分裂的研究   总被引:3,自引:3,他引:0  
针对在磁耦合谐振式无线电能传输过程中当传输距离到达一定值后,耦合因数超过临界耦合值而出现的频率分裂问题。利用互感耦合理论和等效电路模型对系统进行建模分析,得出负载电压和传输效率与耦合因数、失谐因子的关系表达式,并对其频率特性进行分析。为了改善系统在过耦合状态出现的负载电压频率分裂问题,采用了在保持其轴向距离不变的前提下,横向移动接收侧线圈的方式。进行了小功率磁耦合谐振式无线电能传输实验,结果表明通过横向移动接收侧线圈,可以有效改善频率分裂的问题,为无线电能传输在现实中应用提供了有效参考。  相似文献   

17.
该文提出了一种引信体外射频电源技术,通过分别置于发射器和引信中的初、次级耦合线圈,实现能量的非接触传输,对引信体内电容充电,为引信电路和起爆装置提供所需的能量。在低耦合系数条件下,通过基于初级漏感的E类功率放大器和次级漏感的补偿方法,提高电容充电电流和传输效率。最后提供了原理样机和实验结果。  相似文献   

18.
To suppress peak voltage on rectifier diodes in a full bridge( FB) converter,the mechanism of peak voltage was analyzed and an improved FB converter was proposed. One reason for peak voltage is the resonance of the transformer's leakage inductance and the rectifier diodes' junction capacitances. The other reason is that the fast reverse recovery current of the rectifier diodes flows through the transformer's leakage inductance. An H bridge composed of four diodes,an auxiliary inductance, and a clamping winding were adopted in the proposed converter,and peak voltage was suppressed by varying the equivalent inductance, principally in different operating modes. Experimental results demonstrate that the peak voltage of rectifier diodes decreases by 43%,the auxiliary circuit does not lead to additional loss, and the rising rate, resonant frequency,and amplitude of the rectifier diodes' voltage decrease.Peak voltage and electromagnetic interference( EMI) of rectifier diodes are suppressed.  相似文献   

19.
针对磁耦合谐振无线电能传输系统中线圈之间方位改变对系统传输性能的产生影响的问题,利用互感耦合模型,得出了互感系数与系统传输功率和效率的关系,进一步分析了轴向距离、径向距离和偏转角度的改变对传输性能造成的影响,并利用有限元软件进行仿真建模分析,研究表明:存在最佳的轴向和径向距离使得系统传输功率最大,而传输效率却随着轴向和径向距离的增大而减小;偏转角度在一定范围内,系统传输功率和效率基本不变,超出一定范围则逐渐较小,当偏转夹角为90°,传输功率和效率几乎为0。实验验证了理论分析的正确性,可为移动物体的无线充电系统设计和参数优化提供了有效的参考。  相似文献   

20.
反激逆变器的变压器的原边漏感对电路性能及其功率器件的安全工作影响很大,严重时会烧毁器件.针对以上问题,在变压器的原边并联RCD钳位电路,用于抑制因漏感而产生的电压尖峰,保证功率开关管的正常工作及电路的高效运行.通过仿真比较,结果证明电路设计可行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号