首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
郭雨松 《自然杂志》2022,44(3):182-194
Piezo通道是在哺乳动物中发现的机械敏感离子通道,参与触觉形成、渗透压调节等多种重要生理过程,并与感觉异常、心血管疾病、肿瘤等疾病密切相关。Piezo将机械信号转化为电信号的机械激活过程可以由膜穹顶机制来描述解释,即Piezo通道与附近磷脂膜在不受力时呈现高度弯曲的穹顶状,而受力开放时变平,以获得在能量上更稳定的构象。这一过程可受Piezo蛋白本身性质、脂质、互作蛋白等多种因素调节,以适应Piezo复杂多样的生理功能。深入理解Piezo机械激活与调控的分子机理,将有助于从机械转导的角度为相关疾病的防治带来新的突破。  相似文献   

2.
郭文君  陈雷 《科学通报》2023,(17):2213-2220
经典型瞬时受体电势通道(transient receptor potential canonical channel, TRPC)是一类重要的非选择性阳离子通道.该通道家族包含多个成员,在体内广泛分布,参与多种生理病理过程,是治疗如局灶节段性肾小球硬化症(focal segmental glomerular sclerosis, FSGS)等疾病的药物靶点.得益于单颗粒冷冻电子显微镜技术的快速发展,目前已解析的TRPC通道家族多个成员的结构展示了TRPC通道四聚体的组装模式、各结构域的空间排布、具有调节功能的钙离子结合位点和多种小分子化合物的作用位点.这些结构信息与功能实验相辅相成,共同揭示了TRPC通道被钙离子双向调节的机制、小分子化合物的作用机制,以及在人类遗传疾病中发现的致病突变体的激活机制.这些研究进展为进一步探索TRPC通道的工作原理和靶向TRPC通道的药物开发提供了坚实的基础.  相似文献   

3.
细胞内物质运输是细胞发挥正常生物学功能的基础.驱动蛋白可作为运送细胞内物质的载体,通过与不同的骨架蛋白结合以识别不同的分子货物,从而参与这些分子货物下游的生物学效应.没有运输活性的驱动蛋白也可以通过其自身对某些分子信号通路的调节而发挥其功能.大量研究表明,驱动蛋白广泛地参与了多种疾病的发生发展过程,如神经性疾病、代谢性疾病、肾病、癌症等.本文将对近年来诸多关于驱动蛋白与疾病的研究进行综述.  相似文献   

4.
补体系统的发育进化及其与特异性免疫的关系   总被引:2,自引:0,他引:2  
白云  朱锡华 《科学》1999,(10):63-66
哺乳动物的补体系统是一个由补体成份、血浆补体调节蛋白、膜补体调节蛋白及补体受体等30余种糖蛋白组成的,具有精密调控机制的复杂的蛋白质反应系统。多种病原微生物及抗原体复合物等可通过三条既独立又交叉的途径激活补体,产生调理吞噬,杀务细胞,介导炎症,溶解清除免疫复合物等多种重要的生物学效应,虽然抗原-抗体复合能通过经典途径激活补体,  相似文献   

5.
正在生物系统中,生物离子通道可以用于信息传输、能量转换、质量转移.例如:人类通过生物离子通道感受多种刺激(听觉、视觉、味觉等);电鳗通过激活离子通道产生超过600V的电压;含羞草受到机械刺激时通过水在通道内的快速流动引起叶柄下垂.2018年,江雷教授团队[1]将离子和分子在限域孔道内有序快速传输的现象定义为"量子限域超流体效应(quantum confined superfluidics,QSF)",并指出基于QSF概念的材料在仿生学、信息科学、医学等领域拥有广阔的应用前景.  相似文献   

6.
黄海燕  周翔 《科学通报》2023,(30):3887-3898
G四链体是一种非经典的核酸二级结构,并且已经被证实大量存在于多种生物基因组及转录组中的关键调节位点.由于其特殊的四链结构, G四链体能够与多种功能的蛋白发生相互作用,从而参与生物体多种生理及病理过程的调控.因此, G四链体互作蛋白的结构及功能研究将有利于进一步揭示G四链体的生命活动调节机制,促进开发G四链体及其互作蛋白作为疾病治疗靶点的新型治疗方法.近年来,得益于核酸-蛋白互作研究方法的进步及G四链体互作蛋白研究新技术的开发,科学家已经发现了多种功能各异的G四链体互作蛋白.本文简要介绍了已知G四链体互作蛋白的种类和功能,综合评述近年来G四链体互作蛋白研究方法的发展,并对未来的发展方向进行展望.  相似文献   

7.
范高峰 《科学通报》1995,40(18):1695-1695
儿茶酚胺类物质如肾上腺素、去甲肾上腺素和异丙肾上腺素等通过与细胞膜上特异的肾上腺素能受体的结合,调节机体的一系列生理反应.肾上腺素受体可分为α和β两型,β-肾上腺素能受体(β-Adrenergic receptor,β-AR)与配基结合后,通过定位于细胞膜内侧的激活型G-蛋白(Stimulatory GTP-binding Protein,Gs)的偶联,激活腺苷酸环化酶(Adenylate cyclase,AC),促进细胞内第二信使cAMP的形成,从而调节细胞的多种功能如物质代谢、离子交换、突触传递、基因转录、蛋白质生物合成和细胞的分裂、分化等.迄今,β-AR的纯化已在火鸡和蛙红细胞、仓鼠肺等组织中获得成功.本文用亲和层析法从北京鸭红细胞中纯化到β-AR  相似文献   

8.
转移消失蛋白(missing in metastasis,MIM)是一种重要的胞内膜调控蛋白,属于inverse BAR(I-BAR)家族成员,能结合细胞膜并在细胞极化、运动和内吞作用等过程中发挥调节功能,其表达异常与多种疾病尤其是肿瘤发生或转移相关,在神经系统、循环系统和生殖泌尿系统中也有一定作用.MIM蛋白的生物学功能包括调节肌动蛋白细胞骨架、与皮动蛋白等其他蛋白相互作用、参与细胞信号通路调控、改变细胞膜形态并促进细胞极化等,在结构上表现出典型I-BAR家族成员特征,借助其N端的I-BAR区域自聚合形成二聚体,促使细胞膜形成伪足状突起,甚至可以调控人造磷脂囊泡,但二聚体的形成也可被靶向的多肽等抑制剂阻断.除作用于蛋白I-BAR,RPTP结合域的特异性多肽外,MIM也可被RNAi干涉,在肿瘤生物治疗领域具有开发潜力.本文回顾了MIM蛋白相关医学研究进展,综述了MIM蛋白已知的生物功能,分析了MIM蛋白靶向治疗及其他应用前景,并提出了可能的研究新方向、新思路.  相似文献   

9.
端粒是染色体末端一段特殊的重复核苷酸结构,可防止染色体降解或融合.端粒功能异常可导致衰老和癌症等多种疾病.端粒酶逆转录酶(TERT)是端粒酶的催化亚基,可有效保持端粒结构完整性.在黑色素瘤、神经胶质瘤、膀胱癌和肝癌等多种癌症中鉴定出存在高频TERT基因启动子区-124 CT和-146 CT突变,并且这种突变可导致TERT的m RNA、蛋白和酶活性增加,从而增加端粒长度.TERT基因启动子突变可增加转录因子GABP结合而激活基因转录.这些发现将为癌症诊断和治疗提供新的靶点.  相似文献   

10.
叶立  何园  叶浩  刘雪平  杨琳琳  曹志伟  唐凯临 《科学通报》2012,(12):1019-1027,1081,1083
研究候选药物治疗疾病的作用机制是药物研发过程中的一个重要步骤.目前,运用系统生物学方法对蛋白、药物和疾病相互关联网络的分析加深了对药物治疗疾病机理的理解.然而,针对这些关联网络的分析大都是从基因/蛋白的角度直接关联到疾病层面.考虑到蛋白通常通过参与生理通路实现其自身的生物功能,所以本研究提出了以生物通路关联网络的分析方法,以生物通路为研究视角来研究药物治疗疾病的机理.许多研究表明,丹参主要活性成分丹酚酸B对心血管疾病有良好的疗效.本文在运用药物-蛋白关联网络分析方法的基础上,尝试结合生物通路关联网络去分析丹酚酸B治疗心血管疾病的机理.利用分子对接方法计算得到丹酚酸B的作用靶点,同时通过文献挖掘收集实验验证的丹酚酸B治疗心血管疾病的调控蛋白及目前治疗心血管疾病的西药及靶点数据.利用药物-蛋白关联网络分析发现,丹酚酸B能够通过作用肾素-血管紧张素-醛固酮系统中血管紧张素转化酶和肾素,从而舒张血管,最终调节心血管疾病.通过生物通路关联网络分析发现,丹酚酸B可能通过作用凋亡生理过程、免疫/炎症生理过程、离子迁移生理过程和基础代谢生理过程来调节心血管疾病,并且倾向于调节免疫生理过程.因此,基于通路关联网络的分析方法能够为分析药物的治病机理提供新的视角.  相似文献   

11.
李娜娜  徐志刚 《自然杂志》2022,44(3):225-230
内耳毛细胞(hair cell)是动物感知听觉和平衡信息的感受器细胞,负责将机械能信号转换为电信号(即机械-电转换,简称为MET),因位于其上表面的细胞突起——纤毛束(hair bundle)而得名。每个毛细胞的纤毛束包括一根以微管蛋白为骨架的动纤毛(kinocilium)和多根以肌动蛋白为骨架的静纤毛(stereocilia)。动纤毛在纤毛束的发育过程中发挥重要作用,而静纤毛对于机械-电转换必不可少。每个毛细胞中的静纤毛组织成多排高度不同的阶梯状结构,其发育和维持受到严格调控。近年来,随着蛋白质组学、转录组学、超高分辨显微镜等技术的发展,人们对静纤毛高度调控分子机制的认识越来越深入,但仍有很多问题亟待回答。文章对目前已知的静纤毛高度调控的分子机制进行简要介绍。  相似文献   

12.
张贺桥  聂焱 《自然杂志》2021,43(5):349-358
在真核生物中,中介体复合物 (Mediator complex) 接收转录激活子/基因特异型转录因子携带的转录激活信号,并将之传递给核心转录机器——RNA聚合酶II,在这个过程中起到桥梁的作用。中介体复合物与RNA聚合酶II、各种通用转录因子组装成转录前起始复合物,对于真核生物几乎所有基因的转录都是必需的。中介体复合物成分复杂多变,结构柔性较强,针对它的结构生物学和转录调控机制的研究已超过30年。文章小结了中介体复合物的发现历程、功能和组成以及结构生物学方面的突出成果,并对它可能的转录调控机制进行了初步阐释。  相似文献   

13.
郭晓强 《自然杂志》2018,40(4):297-304
雷帕霉素(rapamycin)是一种大环内酯类化合物,最初于1972年由塞加尔从复活岛吸水链霉菌中成功分离。1991年,霍尔首次从酵母中鉴定出雷帕霉素靶蛋白(TOR),从而打开细胞生长和发育机制研究之门。TOR或m TOR是一种重要的分子整合器,可感知来自生长因子、激素、氨基酸和氧状态等的信号,并通过调节下游因子而影响蛋白质、脂类和核苷酸等的合成。TOR/m TOR信号通路在生长和代谢中发挥着重要作用,它的调节紊乱可导致癌症、衰老和糖尿病等多种疾病的发生。雷帕霉素及类似物(rapalogs)已被美国FDA批准应用于预防器官移植排斥反应和治疗肾细胞癌和神经内分泌肿瘤等癌症。文章介绍雷帕霉素和TOR的发现历程以及TOR信号通路的生理作用、机制和临床应用等。  相似文献   

14.
G蛋白偶联受体(G protein-coupled receptor, GPCR)构成人体中最庞大的膜蛋白家族,也是最重要的一类药物靶 标。随着GPCR结构解析技术的突破,目前已破解八十余个受体的400多个结构,揭示出GPCR复杂多样的配体结合模式和 跨膜信号转导机制。近年来,残基相互作用计算已实现对GPCR构象变化的精细描述,揭示出A家族GPCR存在共同的激活 机制。文章简要回顾GPCR激活机制研究的方法和创新点,并对A家族GPCR共同激活机制如何推动功能研究和药物研发进行展望。  相似文献   

15.
陈赛娟  王一煌 《自然杂志》2011,33(6):315-321
Toll最早由德国科学家克里斯汀·纽斯兰芙哈(Christiane Nüsslein Volhard)等于1985年发现,其功能为调控果蝇体节发育。1996年法国斯特拉斯堡国立研究中心的朱尔斯·霍夫曼(Jules Hoffmann)发现Toll基因产物与果蝇感受病原微生物入侵相关,其激活为进行有效防御所必需;1998年美国斯克里普斯研究所布鲁斯·博伊特勒(Bruce Beutler)发现对细菌致病产物脂多糖(lipopolysaccharide, LPS)耐受的小鼠存在一个与果蝇Toll基因非常类似的突变受体基因,并证实这一Toll样受体(Toll like receptor, TLR)就是识别LPS的受体。这些发现表明哺乳动物与果蝇的先天性免疫激活采用类似的分子。他们两位也因发现了激活先天性免疫应答反应的传感器而分享2011年诺贝尔生理学或医学奖一半的奖金,另一半奖金由美国洛克菲勒大学的拉尔夫·斯坦曼(Ralph Steinman)独享。斯坦曼于1973年发现树突状细胞(dendritic cells, DCs),并证实其可激活T细胞,引发获得性免疫应答。进一步研究表明树突状细胞可感受由先天性免疫应答产生的信号并控制T细胞的激活,使免疫系统只对致病微生物产生应答从而避免对自身内源分子进行攻击。这些发现使我们对免疫系统的激活和调控机制有了深入的了解,有助于开发全新的疾病预防和治疗手段。  相似文献   

16.
路伟振  吴蓓丽  赵强 《自然杂志》2012,34(6):337-343
G蛋白偶联受体是人类基因组中最大也是最重要的一类蛋白质,它们几乎参与了生物体中所有的生命活动。这一类受体的发现、功能研究以及结构解析为我们了解生理调控以及疾病的发生与治疗等带来新的曙光。在此之前,G蛋白偶联受体的相关研究已经被九次授予诺贝尔奖,而2012年,诺贝尔化学奖再次授予Robert J. Lefkowitz和Brian K. Kobilka,以表彰他们在此领域,尤其是肾上腺素受体上的相关研究。文中简介了G蛋白偶联受体的研究历程,其独特的七次跨膜结构与激活机制,并对此领域的未来发展做了展望。  相似文献   

17.
18.
在日常生活和工农业生产中,表面张力引起大量有趣的物理现象。笔者介绍了表面张力的物理本质,并综述了自然界中表面张力引起的几个新奇现象,例如球状露珠、液膜、浮在水面的针和水面运动小动物、抱团蚂蚁筏子、荷叶超疏水、以及水鸟的特殊摄食机制等。这些表面张力诱发的现象为我们向自然界学习并仿生制造新型的工具提供了重要的思路。  相似文献   

19.
张禾  李磊 《自然杂志》2021,43(2):96-102
急性心肌梗死是因冠状动脉供血中断引起的急性、持续性局部缺血、缺氧引起的心肌坏死。心肌梗死可促进骨髓及髓外造血器官中造血干祖细胞的动员和分化,进而在心脏梗死部位的炎症反应和心脏功能修复中发挥重要作用,对其具体分子机制的研究将为临床治疗心肌梗死提供更多机遇。文章主要论述心肌梗死后造血系统变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号