首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
镀锌钢上钼酸盐/硅烷复合膜的组成与耐蚀性   总被引:2,自引:0,他引:2  
分别采用一步法和两步法在热镀锌钢板表面获得钼酸盐/硅烷复合膜,通过X射线光电子能谱分析(XPS)、俄歇电子能谱剥层分析(AES)、盐雾腐蚀试验(NSS)及Tafel极化曲线等对两种复合膜的化学成分和耐蚀性能进行了研究,并将它们与单独的钼酸盐转化膜、硅烷膜进行对比.结果表明:一步法和两步法制备的复合膜具有相似的双层结构,内层以钼酸盐转化膜(含O、Mo、Zn、P)为主,外层以硅烷膜(含C、O、Si)为主,内外层之间及膜与锌基体之间的化学成分呈梯度变化;与单独的钼酸盐膜、硅烷膜相比,两种复合膜对腐蚀的阴极过程的抑制明显增强,自腐蚀电流减小至单层膜的1/5以下,耐蚀性显著提高;两步法制备的复合膜耐蚀性超过常规铬酸盐钝化膜,而一步法制备的复合膜的耐蚀性比由两步法制备的稍差,但仍接近常规铬酸盐钝化膜.  相似文献   

2.
超级13Cr不锈钢的钝化膜耐蚀性与半导体特性   总被引:1,自引:0,他引:1  
利用极化曲线和Mott-Schottky曲线,研究了超级13Cr马氏体不锈钢在100、130、150和170℃且含CO2和Cl-的腐蚀介质中浸泡7 d所形成的钝化膜的电化学行为和半导体性质.同时应用光电子能谱表面分析技术分析了超级13Cr钝化膜中的元素价态.结果表明,超级13Cr马氏体不锈钢经腐蚀过后形成的钝化膜表层中Mo和Ni以各自硫化物的形式富集,而Cr以Cr的氧化物的形式富集.在100℃和130℃形成的钝化膜具有良好的耐蚀性,而在150℃和170℃形成的钝化膜耐蚀性下降.产生这种现象的原因与表面钝化膜的半导体性能密切相关,在100℃和130℃中形成的钝化膜具有双极性n-p型半导体特征,且随着温度升高掺杂数量增多,而150℃和170℃介质中形成的钝化膜为p型半导体,故随着温度升高,超级13Cr马氏体不锈钢的耐蚀性能下降.  相似文献   

3.
将热镀锌钢板用二步法(先后浸入钼酸盐钝化液和硅烷溶液)和一步法(一次浸入加有钼酸盐钝化剂的硅烷溶液)获得钼酸盐/硅烷复合膜,用XPS和AES对 2种复合膜的化学成分进行表面分析和剥层分析,用Tafel极化曲线测量和盐雾腐蚀试验(NSS)对膜层的耐蚀性能进行了研究,并将它们与单独的钼酸盐转化膜、硅烷膜对比。结果表明,由一步法制备的复合膜与二步法制备的复合膜具有相似的双层结构,内层以钼酸盐转化膜(含O、Mo、Zn、P)为主而外层以硅烷膜(含C、O、Si)为主,内外层之间及膜与锌基体之间的化学成分呈梯度变化;和单独的钼酸盐膜、硅烷膜相比,2种复合膜对腐蚀的阴极过程的抑制明显增加,自腐蚀电流减小至单层膜的1/5以下,耐蚀性显著提高,接近常规铬酸盐钝化膜。  相似文献   

4.
采用自行设计的活化促进剂制备了不同机械镀镀层,即锌(325目与500目)及锌铝(5%)复合镀层,对镀层进行了5% NaCl溶液喷雾加速腐蚀试验、镀层的附着力性能检测与扫描电镜观察表面形貌和截面结构分析.试验结果表明:同等条件下,500目锌粉镀层耐蚀性优于325目锌粉镀层,锌铝复合镀层耐蚀性优于镀锌层,钝化后的镀层耐腐蚀性明显强于未钝化镀层;制备的机械镀锌、锌铝镀层附着力均符合标准.同时对耐蚀性的原因作了推测分析.  相似文献   

5.
将热镀锌钢分别浸入添加和不添加柠檬酸的镧盐钝化液中,在镀锌钢表面获得柠檬酸改进型镧盐转化膜和常规镧盐转化膜.用中性盐雾(NSS)试验、塔菲尔极化和电化学阻抗谱研究了这些试样的耐蚀性能,并对带划痕的柠檬酸改进型和常规镧盐膜层试样进行NSS腐蚀,用扫描电子显微镜和能谱仪观察分析了腐蚀过程中划痕表面的组织形貌和化学成分.结果表明:柠檬酸的加入显著提高了镧盐转化膜的耐蚀性能,并使膜层具备自愈性;腐蚀过程中,划痕附近的柠檬酸镧溶解产生La3+和柠檬酸根离子,从膜层中扩散迁移至划痕处,形成新的由Zn、O、La、C元素组成的保护膜,从而抑制了划痕处锌的腐蚀.  相似文献   

6.
通过恒电流脉冲法研究了钢筋在不同pH值模拟混凝土孔溶液中的腐蚀行为.应用时间常数与双电层电容计算了钢筋的极化电阻.结果表明:钝化钢筋的时间常数大于活化腐蚀钢筋,钝化钢筋的双电层电容比活化腐蚀钢筋小;腐蚀末期较好的抗腐蚀能力证实了钢筋在CP模拟液(pH13·6)中形成的钝化膜比在CH模拟液(pH12·5)中更致密,耐蚀性更好,而在CN模拟液(pH11·0)中基本无法形成完整的钝化膜;SO2-4与SiO2-3加入CP模拟液能提高钢筋的极化电阻,钢筋表面形成了更致密的钝化膜,在腐蚀末期钢筋表现出了更好的耐蚀性.最后,比较了恒电流脉冲、线性极化及电化学阻抗谱所测的极化电阻与腐蚀电流密度,表明这三种电化学方法在测试钢筋腐蚀速率方面具有较好的相关性.  相似文献   

7.
不锈钢是使用范围广泛且环保的一种耐蚀材料,但不锈钢在空气中自钝化形成的氧化膜的耐蚀性不佳,因此后续钝化处理是提高不锈钢表面耐蚀性的重要方法.本文综述了提高不锈钢表面耐蚀方法的研究进展.介绍不锈钢的钝化机理、硝酸钝化方法与柠檬酸钝化方法的最佳工艺.总结动电位极化曲线、电化学阻抗谱、Mott-Schottky曲线、循环伏安法和磨损-电化学腐蚀共五种不锈钢钝化膜耐蚀性测试方法.梳理塑性变形对不锈钢耐蚀性的影响,强调适度的塑性变形能够提高不锈钢耐蚀性.展望不锈钢钝化处理及塑性变形增强不锈钢钝化效应的研究趋势.  相似文献   

8.
对钢铁基体表面电弧喷涂铝及铝锌涂层进行了动态腐蚀实验 ,以失质量法计算了腐蚀速度 ,并探讨了腐蚀机理。采用SEM对铝及铝锌涂层腐蚀前后的外表形貌进行了观察 ,并对铝及铝锌涂层表面进行了能谱分析 ,采用电化学系统测试了涂层的自腐蚀电位。实验结果表明 ,在 3 %NaCl水溶液中铝涂层的耐蚀性优于铝锌涂层 ;其原因是铝涂层表面上氧化膜的自愈能力及自腐蚀电位高于铝锌涂层。研究还表明 ,铝及铝锌这些阳极涂层不仅能有效地保护它所覆盖的钢铁表面 ,还能保护暴露于腐蚀介质中的钢铁基体表面。在铝、铝锌涂层上刷涂有机涂料 ,有机涂料能渗透到金属涂层的孔隙中 ,将孔隙封闭。同时 ,有机涂层和金属涂层能构成复合涂层 ,其防腐效果更佳  相似文献   

9.
电弧喷涂铝及铝—锌涂层在动态腐蚀介质中的耐蚀性研究   总被引:1,自引:0,他引:1  
对钢铁基体表面电弧喷涂铝及铝-锌涂层进行了动态腐蚀实验,以失质量法计算了腐蚀速度,并探讨了腐蚀机理。采用SEM对铝及铝—锌涂层腐蚀前后的外表形貌进行了观察,并对铝及铝—锌涂层表面进行了能谱分析,采用电化学系统测试了涂层的自腐蚀电位。实验结果表明,在3%NaCl水溶液中铝涂层的耐蚀性优于铝-锌涂层;其原因是铝涂层表面上氧化膜的自愈能力及自腐蚀电位高于铝-锌涂层。研究还表明,铝及铝—锌这些阳极涂层不仅能有效地保护它所覆盖的钢铁表面,还能保护暴露于腐蚀介质中的钢铁基体表面。在铝、铝—锌涂层上刷涂有机涂料,有机涂料能渗透到金属涂层的孔隙中,将孔隙封闭。同时,有机涂层和金属涂层能构成复合涂层,其防腐效果更佳。  相似文献   

10.
苯基TMPAC-AlCl3离子液体电镀铝研究   总被引:1,自引:0,他引:1  
采用以苯为助溶剂的TMPAC-AlCl3季铵盐室温离子液体,在铜上电镀铝.探讨了电流密度和电镀时间对镀铝层表观形貌和阴极电流效率的影响;通过极化曲线评价了镀铝层的耐蚀性,并采用扫描电镜,能量弥散X射线谱仪和X射线衍射仪等手段对样品进行表征.结果表明,在电流密度为15 mA/cm2,电镀时间为30 min条件下获得的镀铝层表面致密,阴极电流效率最高,达92%.阴极电流效率随电镀时间延长而下降,主要原因为AlCl3在Al阳极表面上的析出.极化曲线测试表明,镀铝层越厚,镀层的耐蚀性越好;厚度达17μm的镀铝层具有阳极钝化行为,可有效地保护基体.  相似文献   

11.
采用化学溶液沉积法制备了La0.5Sr0.5Ti O3(LSTO)外延薄膜作为第二代高温超导带材YBCO涂层导体的缓冲层.以乙酸镧、碳酸锶和钛酸丁酯为前驱物,配制了La离子浓度为0.14 mol/L的前驱液,经旋转涂覆和适当的热处理制得LSTO薄膜.对薄膜前驱粉末进行了热重与差热分析,确定了LSTO的合成过程.X射线衍射分析表明,在840,890℃恒温60 min的热处理后样品薄膜为单相的LSTO,具有明显的(100)择优生长取向,缓慢升温更有利于LSTO薄膜的结晶.扫描电镜结果表明:LSTO薄膜表面光滑致密,采用四探针法测得薄膜电阻率约为1×10-2Ω.cm.这种方法制取的LSTO薄膜电阻率小,外延性好,可作为YBCO涂层导体的导电缓冲层.  相似文献   

12.
以Mg(NO3)2.6H2O为原料,无水乙醇为溶剂,胶棉液为表面活性剂,利用溶胶-凝胶法制备了MgO溶胶,并利用浸渍提拉法在三维网络-碳化硅(3D-SiC)陶瓷骨架表面涂覆MgO溶胶,经煅烧制得纳米MgO薄膜.利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)分析了薄膜的物相和显微结构.结果表明,利用浸渍提拉法在HF溶液浸蚀后的3D-SiC骨架表面涂覆质量比m(Mg(NO3)2.6H2O)∶m(胶棉液)=1.0的MgO溶胶后,在80℃干燥10 min,再升至480℃干燥10 min,最后800℃煅烧1 h,可制备出致密平整,厚度为0.8~1.0μm的纳米MgO薄膜.薄膜与骨架结合良好,MgO...  相似文献   

13.
研究了磁控溅射法制备的Ni3Si涂层对Ti6Al4V合金在600℃下,抗NaCl/氧气/水蒸气协同腐蚀性能的影响.结果表明,在材料遭受腐蚀的过程中,Ni3Si涂层有效地改善了Ti6Al4V合金抗NaCl/氧气/水蒸气综合腐蚀的能力;而无涂层试样遭受了严重的腐蚀,不仅发生了内氧化,而且有大量的腐蚀产物脱落.利用带能谱的扫描电镜、X射线衍射、电子探针和表面光电子能谱对样品的腐蚀行为进行了分析,并讨论了涂层抗腐蚀的机理.  相似文献   

14.
以C鳞片,SiC,B4C和TiO2为原料,在2000℃热压合成C-SiC-B4C-TiB2复合材料.研究复合材料在600~1400℃静态空气中的恒温氧化行为,利用TG/DTA研究复合材料氧化机理,利用XRD,SEM研究复合材料恒温氧化后表面相组成和氧化层剖面的显微结构.结果表明不同C鳞片含量的复合材料的氧化动力学曲线均为抛物线,氧化层可分成氧化膜和过渡层,C鳞片质量分数为20%的复合材料在1400℃时有很好的抗氧化自还原能力,表面生成致密的氧化膜,氧化膜的成分为未形成玻璃态的TiO2或SiO2.TiO2固溶体,组织形貌为枝条状.  相似文献   

15.
为了使BaPbO3薄膜作为YBCO涂层导体的导电隔离层,必须制备出具有一定取向且表面平整光滑的薄膜.实验采用乙酸钡和乙酸铅为溶质,以丙酸为溶剂,制得了稳定均匀的涂层前驱液.前驱液在单晶LaAlO3(100)基底上旋转涂覆形成的前驱膜在氧气的环境下于650℃烧结30 min制备出薄膜样品.经XRD分析,薄膜物相组成为单相的BaPbO3,且具有少许(100)取向;通过SEM观察,其表面均匀致密,厚度约为650nm;用四引线法测得薄膜室温电阻率为1×10-3Ω.cm.  相似文献   

16.
在单分散准球形-αFe2O3纳米颗粒的悬浮液中,在氨碱催化下,CoCl2水解产生的Co(OH)2沉积在-αFe2O3纳米颗粒表面,形成核-壳粒子.经500℃热处理后,壳层物质晶化为立方晶系Co3O4,壳层厚度约为6 nm.不同的氨碱液对核-壳结构产生影响,在1 mol.L-1尿素溶液的催化下,得到均匀的核-壳结构.应用TEM和XRD分析了产物结构,并利用UV-Vis光谱对复合材料的光吸收特性进行了研究.与-αFe2O3纳米颗粒的吸收光谱比较,在光激发下,Co3O4/Fe2O3核-壳粒子光吸收特性发生改变,在可见光区产生新的强吸收峰.  相似文献   

17.
采用溶胶 凝胶法制备了均匀的YBa2Cu3O7-δ超导细粉·讨论了凝胶的形成过程·配合剂柠檬酸与金属离子结合形成了可溶性的大分子化合物,除水后缩聚反应形成的聚合物长大为小粒子簇,相互连结成连续的三维网络·柠檬酸盐溶液的pH值控制在6 4~6 7之间可防止白色Ba(NO3)2沉淀·溶剂挥发温度宜控制在300℃,使凝胶的形成和自燃过程能在相同温度条件下连续进行·合成YBa2Cu3O7-δ的温度大约在880℃左右,其粉末粒度大约在0 2~1μm之间·  相似文献   

18.
光降解用WO_3-TiO_2复合光催化剂   总被引:7,自引:1,他引:7  
用溶胶 凝胶法制备了纳米WO3 TiO2复合薄膜型光催化剂·利用该薄膜对罗丹明B溶液的光催化降解作用,考察了钨酸盐种类及其掺杂量、涂膜层数、溶解氧、焙烧温度、焙烧时间、基体材料等因素对光催化活性的影响·结果表明,钨酸铵加入量x(W)=1 5%、多孔钛片为基质,涂覆9层、500℃下焙烧1h得到的WO3 TiO2薄膜型复合光催化剂活性最高,其光催化活性较纯TiO2光催化剂提高1 5倍·该温度下多孔钛片负载的TiO2为锐钛矿型·  相似文献   

19.
赛隆-碳化硅系复合材料的合成及其应用   总被引:11,自引:0,他引:11  
以蜡石和碳黑为原料,通过碳热还原法合成了赛隆-碳化硅系复合材料,将其作为添加剂应用于Al2O3 C系不定形耐火材料中·考察了加热温度对赛隆-碳化硅系复合材料合成过程的影响以及添加赛隆-碳化硅系复合材料对耐火材料性能的影响·研究结果表明,通过向蜡石中添加适量的碳黑,并将蜡石和碳黑的混合物在氮气气氛下加热到1540℃时,可以很容易地合成赛隆-碳化硅系复合材料·通过添加适量的赛隆 碳化硅系复合材料,Al2O3 C系不定形耐火材料的抗氧化性能、抗渣侵蚀性能以及高温抗折强度均得到了明显的改善·  相似文献   

20.
低碳钢的高温力学性能   总被引:1,自引:0,他引:1  
利用Gleeble 1500热模拟实验机,采用加热法和凝固法两种加热变形制度,研究了实验用低碳钢的热塑性及强度,测定了该钢种的零塑性温度(ZDT)θd及零强度温度(ZST)θs,分析了其裂纹敏感性及断口组织·结果表明,凝固法所测结果更符合实际;实验钢的高温脆性温度范围为1300℃至熔点,在1100~1300℃范围内,此钢的断面收缩率均大于60%,具有良好的塑性·实验用低碳钢的高温脆性区较小,具有较强的抗高温裂纹特性·其θd和θs分别为1350℃和1400℃·  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号