首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
该文采用冲击波相似率和量纲分析法研究了冲击波压力持续时间(SWPD)在靶板中的衰减特性,获得了SWPD在靶板中的理论衰减模型。结果表明,当靶板材料及飞片速度确定时,在靶板中某传播距离处的SWPD与靶板撞击面中心处的SWPD之比是传播距离与飞片厚度之比的函数;当传播距离和飞片厚度的比值不变时,该传播距离处的SWPD与靶板撞击面中心处SWPD的比值也不变。利用数值仿真方法分析了SWPD在无氧铜材料靶板中的衰减特性,获得了SWPD衰减模型的定量分析结果,验证了该文理论衰减模型的有效性。  相似文献   

2.
本文研究了不均匀非磁化等离子体片的自由电子密度与目标隐身的关系,给出不同等离子体自由电子密度分布时,对不同频段的雷达电磁波的衰减.研究发现,等离子体的自由电子密度应与雷达频率相关.雷达在高频、甚高频等低频段工作时,等离子体隐身的效果不理想;雷达工作在L、S、C、X等高频频段时,等离子体隐身效果显著.此外,我们发现对不同的雷达频率,等离子体存在一个最佳碰撞频率使入射电磁波衰减最大,该频率接近入射电磁波的频率.  相似文献   

3.
通过假定一定的等离子体温度、密度分布,数值求解了一维等离子体的连续性方程,获得了杂质氩电离态分布,其辐射功率随空间位置和时间而变化.结果显示:在杂质注入时间较短时,由于离子输运及各种损失机制,总杂质密度在空间分布尚未达到平衡,电离态离子主要分布在等离子体周边,完全电离离子所占份额很小;当时间达到0.25 s时,氩在等离子体中完全达到平衡状态,体积辐射功率趋于一个稳定的数值;辐射功率在空间的分布随时问变化较小,主要分布在等离子体周边及边界层一个狭小的辐射带内,说明氩引起的辐射主要由低电离态离子引起.  相似文献   

4.
通过假定一定的等离子体温度、密度分布,数值求解了一维等离子体的连续性方程,获得了杂质氩电离态分布,其辐射功率随空间位置和时间而变化。结果显示:在杂质注入时间较短时,由于离子输运及各种损失机制,总杂质密度在空间分布尚未达到平衡,电离态离子主要分布在等离子体周边,完全电离离子所占份额很小;当时间达到0.25s时,氩在等离子体中完全达到平衡状态,体积辐射功率趋于一个稳定的数值;辐射功率在空间的分布随时间变化较小,主要分布在等离子体周边及边界层一个狭小的辐射带内,说明氩引起的辐射主要由低电离态离子引起。  相似文献   

5.
针对射频波加热等离子体的稳态过程,考虑等离子体径向密度呈抛物线分布和高斯分布,分析讨论了径向压强和温度分布对两种密度分布的螺旋波等离子体内功率沉积以及电场和电流密度的分布影响.考虑正梯度、负梯度和零梯度三种梯度模型.通过研究表明:正温度梯度更有利于等离子体中心处的功率的吸收;正压强梯度增大了等离子体边缘处感应电场,减小了中心处电流密度,并减弱了边缘处功率沉积,波能量耦合深度加深,更有利于中心处功率的耦合吸收;等离子体径向密度为高斯分布时,等离子体边缘处电场强度较高,电流密度较小,射频波在边缘处沉积能量较少且变化不大,进而造成波能量的耦合深度大大增加;等离子体径向密度为抛物线分布时,等离子体中心处和边缘处功率沉积较大,其中边缘处附近功率沉积尤为突出且明显高于高斯分布时的.三种温度和压强分布对两种密度结构的等离子体中电场强度与电流密度分布与变化趋势影响基本相似,由此证明m=1模式的稳定性.  相似文献   

6.
对660—760mm长的米波半波天线在人工等离子体包围下的辐射性能和特性阻抗受到的影响以及电波穿过等离子体后场强的衰减进行了实验研究。等离子体浓度为10~8—10~(10)/cm~3。天线工作频率80—150MHz,远低于等离子体频率。结果表明这样的薄层等离子体(20cm厚)鞘套使电波场强衰减达十几分贝,输入阻抗明显改变。文中对这些实验结果进行了初步的分析和讨论。  相似文献   

7.
重点讨论了脉冲激光烧蚀技术中,在考虑等离子体电离效应时等离子体的空间动力学演化特征.首先将等离子体视为可压缩理想气体,根据局域质量守恒和动量守恒,给出了在柱面坐标系下的等离子体压力与空间数密度的变化规律.在此基础上,结合适当的边界条件,用解析法进行求解,得到了在考虑等离子体电离效应时的一组新的动力学演化方程.分析结果表明,电离度会使等离子体的速度沿各个方向都得到加速,等离子体的内部速度具有自相似表达形式.  相似文献   

8.
平面电磁波在等离子体中的吸收衰减   总被引:7,自引:0,他引:7  
研究等离子体在隐身技术中的应用.采用垂直入射线极化平面电磁波斜入射到具有金属衬底的等离子体层的模型,利用W.K.B解,推导出电磁波能量衰减与电磁波频率和等离子体密度的关系式.在此基础上,对不同入射角的电磁波在等离子体密度为均匀分布、线性分布和指数分布情况下传播的能量衰减进行了数值计算.结果表明,电磁波衰减随等离子体密度以及电磁波入射角增加而增加;在3种分布情况下电磁波能量衰减规律是相似的.  相似文献   

9.
等离子体对微带电磁波传输的影响   总被引:1,自引:1,他引:0  
研究了微带线间隙填充均匀等离子体层对电磁波传输的影响. 得到了在大小两种间隙下等离子体频率(密度)、电子碰撞频率、等离子体厚度和宽度等参数与电磁波传输效率的关系. 仿真结果表明,对给定微带间隙,较高频率电磁波将无损或低损通过间隙,而较低频率电磁波被截止. 填充一定密度等离子体后,被截止的低频电磁波可以通过间隙,其传输效率随等离子体密度(频率)增大而增大,随碰撞频率增大而减小,而且间隙等离子体应具有适当的宽度和厚度. 等离子体在高频段产生一个衰减峰,其位置与等离子体频率成正比,但与碰撞频率无关. 利用等离子体可以控制微带线上电磁波的传输.  相似文献   

10.
应用Monte-Carlo方法,模拟了Tokamak装置中的中性粒子的输运过程,模型考虑了中性粒子在等离子体中的电荷交换、电子碰撞电离、离子碰撞电离等离化过程,以HT-7 Tokamak为例,计算了在注入超声速中性氢粒子时所产生的氢原子密度空间分布.模拟结果表明:随着注入中性粒子束初始能量的增加,中性粒子束在等离子体中的渗透距离相应增大;而中性粒子在Tokamak中的密度随着注入通量的增加也相应增加.模拟计算所得的氢原子密度空间分布与经典估计方法的结果在Tokamak中等离子体的边界处较一致。  相似文献   

11.
本文阐述了空气击穿过程的起始阶段和电离过程的物理机理,给出了击穿阈值的计算公式.并用一台调Q—YAG激光器和光延时装置研究了激光引诱空气击穿过程,首次获得该过程产生冲击波的最初阶段的时间序列分辨M—Z干涉图和阴影图.  相似文献   

12.
高功率激光等离子体冲击波探测中衍射效应的消除   总被引:2,自引:0,他引:2  
研究光学非接触方法探测高功率激光产生的等离子体和冲击波实验中的衍射现象,运用衍射理论和透镜成像原理,提出让待测区与接收器件成物像共轭关系,以克服衍射效应带来的对等离子体和冲击波测量误差的方法,并从理论上导出:当等离子体区域与相机位置相对于成像透镜满足物像关系时,衍射效应的影响被显著消除,通过激光作用于铝靶的实验结果,验证这一方法的可行性。  相似文献   

13.
为提高金属桥箔电爆炸的能量利用效率,增加桥箔电爆炸等离子体作用范围,设计了金属阵列桥箔结构,采用有限元流体动力学方法对金属阵列桥箔电爆炸过程进行了数值模拟.利用相变分数和考虑电离度、粒子数目变化及粒子间库仑作用的等离子体状态方程,实现了金属导体在脉冲大电流作用下电爆炸产生等离子体及冲击波的数值模拟计算.对比分析了阵列桥箔在有加速膛通道和无加速膛自由场两种情况下的电爆炸等离子体流场特征及演化规律.计算结果表明,两种情况下等离子体束在叠加汇聚区压力较高,在无加速膛自由场中电爆炸初始冲击波速度和等离子体射流传播速度都较高;在有加速膛情况下,由于气体粘性作用,管壁附近存在一个高压低速边界层,加速膛通道内冲击结构较为复杂.  相似文献   

14.
本文分析了压力阶跃波法测量固体介质中空间电荷分布的基本原理,讨论了激波在气体激波管内的传播及气体激波作用于固体时在固体内引起的波动的过程。用直径为113mm的激波管为主体构成了空间电荷测量系统,并用压力传感器和微型计算机构成了激波波速测量装置,从而较准确地获得了激波波速、激波压力阶跃波形等有关参数。并得到了一些空间电荷的测量结果。  相似文献   

15.
等离子体气动激励能够显著提升飞行器/动力装置的气动性能。本文进行了等离子体气动激励减小RAE2822翼型跨音速阻力的数值模拟。将电弧放电等离子体激励简化为对流场的热能注入,建立了基于唯象学的数值计算模型,以实验测试结果作为输入条件,将热能以源项的形式加入N-S方程求解,研究了不同来流速度、激励强度以及激励位置下等离子体气动激励对翼型阻力特性的影响。仿真结果表明:等离子体气动激励可以有效减小RAE2822翼型跨音速阻力,来流速度与等离子体气动激励减阻效果有较大关系,当[WTBX]Ma=0.81时,减阻达到13.58%;激励强度对减阻效果影响较小,当W[WTBZ]=3 000 K时,减阻达到11.77%;增大激励位置,减阻效果增大,但幅度变小,当[WTBX]D[WTBZ]=20 mm时,减阻达到13.17%。  相似文献   

16.
为探究激光冲击薄壁件时残余拉应力的形成机制,利用ABAQUS软件对0.5mm钛合金薄壁件激光冲击条件下的冲击波作用规律和材料动态响应规律展开研究。结果表明,冲击波在薄壁件内反射时交替形成高数值拉伸波和压缩波,在压缩波和拉伸波的耦合作用下应力分布混乱并呈现"多峰"特点,形成了峰值为426 MPa、厚度达0.125mm的拉应力层,且最大残余拉应力位于表面处。基于冲击波反射规律揭示了薄壁件中残余拉应力的形成机制,并通过增加试件厚度以降低反射拉伸波强度发现5mm厚试件内最大残余拉应力仅为70 MPa,且表面处的拉应力转化为了压应力,从而提出了通过导波等方式控制应力波反射强度的薄壁件残余应力调控方法。  相似文献   

17.
PVB夹层钢化玻璃冲击波毁伤效应实验研究   总被引:1,自引:0,他引:1  
为获得爆炸冲击波对带PVB夹层钢化玻璃的超压毁伤阈值和冲量毁伤阈值,针对6 mm+1.52 mmPVB+6 mm厚带PVB夹层的钢化玻璃进行了多发外场化爆实验,对每一发实验进行了爆炸参数测试,获得了冲击波超压随时间变化历程的实验数据.通过观察和记录的实验现象,分析确定了6 mm+1.52 mmPVB+6 mm厚带PVB夹层钢化玻璃被冲击波破坏的临界状态所对应的实验发次.结合实验设计与实施条件,根据冲击波压力测试结果,得到了6 mm+1.52 mmPVB+6 mm厚带PVB夹层的钢化玻璃冲击波超压和冲量毁伤阈值的近似值.实验结果表明,在合理的安装方式下6 mm+1.52 mmPVB+6 mm厚带PVB夹层的钢化玻璃的冲击波毁伤超压阈值范围为41~55 kPa,冲量阈值范围为180~299 kP a· ms.   相似文献   

18.
为有效抑制煤矿瓦斯爆炸产生的冲击波,自行设计、搭建了瓦斯爆炸圆形大尺度管道实验系统,对8%浓度的瓦斯预混爆炸过程中多孔泡沫陶瓷对冲击波的抑制特性进行了研究.研究结果表明:泡沫陶瓷的多孔结构通过弹性形变和塑性形变吸收瓦斯预混爆燃的冲击波能量,实现抑制、衰减冲击波的效果.泡沫陶瓷层数、厚度和位置对抑制瓦斯爆炸传播均有一定的影响,其中层数影响尤为显著,双层布置时爆炸冲击最大超压下降速度更快、梯度更大;设置位置距点火端的距离3 m至4 m的范围内可以成功抑制爆炸的发展和演化;泡沫陶瓷厚度对爆炸冲击波趋势影响并不明显,而对最大超压数值有影响,相比50 mm厚,30 mm厚的泡沫陶瓷最大超压衰减率更大,抑爆效果更好.  相似文献   

19.
为有效抑制瓦斯爆炸冲击波及火焰传播,构建大尺度圆形管道实验装置,对瓦斯预混爆炸过程中泡沫陶瓷对冲击波和火焰传播抑制特性进行研究.结果表明:泡沫陶瓷能够吸收瓦斯爆炸冲击波能量,对火焰和冲击波传播抑制效果明显,泡沫陶瓷挡板厚度及设置层数、位置是典型影响因素.挡板设置位置距点火端距离十分重要,其临界值应为起爆期间火焰传播速度达到最大值位置以内,进而实现对瓦斯爆炸传播与发展的有效抑制.对比双层和单层挡板布置的实验结果,双层布置时冲击波最大超压下降更快.但是,挡板厚度的影响并不明显.设置厚度为50 mm或30 mm的挡板时,测得最大超压的沿程衰减趋势一致,大小也很相近.  相似文献   

20.
借助于小药量水下爆炸试验及数值模拟研究了水下爆炸近场载荷及其运动特性。试验在爆炸水箱中进行,采用同时分幅扫描超高速光电系统拍摄炸药爆炸后视场600 mm×600 mm以内的冲击波及爆轰产物演化过程。使用LS-DYNA软件的ALE方法计算了水下爆炸近场冲击波、爆轰产物气体运动特性,以及冲击波峰值压力和爆轰产物气体与水介质边界压力变化特性,数值模拟结果与试验结果有很好的近似。在试验和数值模拟基础上,提出了适用于水下爆炸近场的冲击波运动、峰值压力的变化规律,并建立了爆轰产物气体初期膨胀运动规律及压力变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号