首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elicitor prepared from the cell walls of Peni-cillium citrinum induces multiple responses of Taxuschinensis cells, including nitric oxide (NO) generation, se-quentially followed by the activation of PAL and synthesis oftaxol. NO scavenger cPITO and nitric oxide synthase (NOS)inhibitor PBITU prevent the latter two reactions, all of whichare triggered in the absence of elicitor by NO donor sodiumnitroprusside (SNP). The elicitor-induced NO release ofTaxus chinensis suspension cells is strongly inhibited byPBITU. These results demonstrate a causal relationship be-tween NO generation and the latter two reactions of Taxus chinensis cells to the elicitor, and also indicate that NO, pro-duced via NOS in Taxus chinensis cells treated with fungalelicitor, might act as an essential signaling molecule for trig-gering the activation of PAL and synthesis of taxol.  相似文献   

2.
ROS 作为信息分子是生命科学研究中继发现 NO 是信息分子后的又一重要事件。探索了外源性 ROS(H_2O_2)对人中性粒细胞(Np)呼吸爆发产物 O_2水平的影响,结果表明外源性 H_2O_2对 Np呼吸爆发水平有反馈调节作用。  相似文献   

3.
S-nitrosylation of NADPH oxidase regulates cell death in plant immunity   总被引:2,自引:0,他引:2  
Yun BW  Feechan A  Yin M  Saidi NB  Le Bihan T  Yu M  Moore JW  Kang JG  Kwon E  Spoel SH  Pallas JA  Loake GJ 《Nature》2011,478(7368):264-268
Changes in redox status are a conspicuous feature of immune responses in a variety of eukaryotes, but the associated signalling mechanisms are not well understood. In plants, attempted microbial infection triggers the rapid synthesis of nitric oxide and a parallel accumulation of reactive oxygen intermediates, the latter generated by NADPH oxidases related to those responsible for the pathogen-activated respiratory burst in phagocytes. Both nitric oxide and reactive oxygen intermediates have been implicated in controlling the hypersensitive response, a programmed execution of plant cells at sites of attempted infection. However, the molecular mechanisms that underpin their function and coordinate their synthesis are unknown. Here we show genetic evidence that increases in cysteine thiols modified using nitric oxide, termed S-nitrosothiols, facilitate the hypersensitive response in the absence of the cell death agonist salicylic acid and the synthesis of reactive oxygen intermediates. Surprisingly, when concentrations of S-nitrosothiols were high, nitric oxide function also governed a negative feedback loop limiting the hypersensitive response, mediated by S-nitrosylation of the NADPH oxidase, AtRBOHD, at Cys 890, abolishing its ability to synthesize reactive oxygen intermediates. Accordingly, mutation of Cys 890 compromised S-nitrosothiol-mediated control of AtRBOHD activity, perturbing the magnitude of cell death development. This cysteine is evolutionarily conserved and specifically S-nitrosylated in both human and fly NADPH oxidase, suggesting that this mechanism may govern immune responses in both plants and animals.  相似文献   

4.
5.
由于铈离子可以在Ce~(3+)和Ce~(4+)之间可逆转换,以及氧空位的存在,氧化铈(CeO_(2-x),x=0~0.5)纳米粒子具有优异的催化特性,作为一种用途广泛的稀土氧化物得到了广泛的关注.Ce原子能够快速而大幅度地调整其电子结构(如产生氧空位或缺陷),以最佳的结构适应其周围环境,具有多种酶类活性(包括超氧化物氧化酶、过氧化氢酶和氧化酶等),可以清除体内产生的各种毒性活性氧.氧化铈在生物分析、生物医学、药物传递和生物支架等生物领域展现出了良好的应用前景.综述了氧化铈的制备方法及其在生物领域的应用进展.  相似文献   

6.
葡萄籽原花青素提取物抗氧化作用研究   总被引:18,自引:2,他引:16  
为研究葡萄籽原花青素提取物(grape procyanidins extract,GPE)抗氧化和对DNA氧化损伤的保护作用,我们采用七种生物化学发光体系,检测了GPE 对O2-、OH、H2O2、ONOO-和全血嗜中性白细胞“呼吸爆发”产生的多种活性氧的清除作用,以及对OH引起的DNA氧化损伤的保护作用;采用Fe2+诱发脂蛋白多不饱和脂肪酸过氧化比色体系,检测了GPE对脂质过氧化分抑制作用。结果显示,GPE 能有效地清除O2-、OH、H2O2、ONOO-和全血嗜中性白细胞“呼吸爆发”产生的多种活性氧而抑制体系 发光,并有效抑制脂质过氧化,半抑制浓度分别约为0.2ug/ml、90ug/ml、0.5ug/ml、10ug/ml、130ug/ml、70ug/ml;25ug/ml的GPE对DNA氧化损伤的抑制率誉为70%。提示GPE 能有效清除多种自由基,保护DNA免受·OH引起的氧化损伤,嗜良好的抗氧化剂。  相似文献   

7.
蛋白质S-亚硝基化是一氧化氮(NO)与蛋白质半胱氨酸残基(Cys)共价连接形成S-亚硝基硫醇(-SNO)的过程,被认为是植物中体现NO生物活性的最重要途径.线粒体在依赖S-亚硝基化的NO信号转导中起关键作用.综述了应用蛋白质组学技术鉴定的植物线粒体S-亚硝基化蛋白质的特征,为认识线粒体NO调控网络体系中重要的信号与代谢通路(如光呼吸、三羧酸循环、氧化磷酸化、活性氧分子(ROS)稳态,以及蛋白质加工与周转)提供了线索.  相似文献   

8.
9.
四环素胁迫对羊角月牙藻生长及抗氧化系统的影响   总被引:1,自引:0,他引:1  
为探究四环素对藻类产生的毒性效应,选择羊角月牙藻(Selenastrum capricornutum)作为受试生物,采用室内试验方法,研究不同质量浓度的四环素(0,0.2,0.4,0.8,1.6,3.2 mg/L)对羊角月牙藻的生长抑制情况、叶绿素a含量、超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量及活性氧(ROS)水平的影响。结果表明:四环素对羊角月牙藻的生长具有抑制作用,96 h半数效应浓度(EC_(50))为3.142 mg/L;四环素抑制了羊角月牙藻细胞中的叶绿素a含量;试验96 h时,随着四环素浓度的增大,羊角月牙藻细胞的SOD活性呈现先升高后降低的趋势,MDA含量、ROS水平均表现为升高趋势。因此,四环素可胁迫羊角月牙藻产生氧化应激反应,损害藻体的抗氧化系统,对水生生态系统具有潜在风险。  相似文献   

10.
Brassica chinensis L. was chosen and exposed to different concentrations of Cd exposure to evaluate its Cd-accumulating capacity and its potential cellular defensive mechanisms. Cd accumulation in the shoots and roots of B. chinensis was up to 1348.3±461.8 and 3761.0±795.0 mg per killogram of dry weight, respectively, under 200 μmol/L of Cd exposure. Increasing Cd accumulation in the plant was accompanied by rapid accumulation of phytochelatins (PCs), and the sequestration of Cd by PCs provided a primary cellular mechanism for Cd detoxification and tolerance of B. chinensis. Furthermore, malondialdehyde formation, hydrogen peroxide content and antioxidative enzyme activities such as superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase were observed in the shoots of Cd-stressed B. chinensis. Increasing enzyme activities in response to concentrations of 5 to 50 μmol/L Cd showed an efficient defense against oxidative stress, suggesting that the antioxidative system was a secondary defensive mechanism. These resulted in reduced free Cd damage and enhanced Cd accumulation and tolerance. Glutathione plays a pivotal role in these two detoxification pathways. In general, these results suggested that PCs and the antioxidative system are synergistic in combatting Cd-induced oxidative stress and that they play important roles in Cd detoxification of B. chinensis, and also give a deep understanding of the natural defensive mechanisms in plants under heavy metal stress.  相似文献   

11.
为了阐明虾青素的抗氧化作用与细胞凋亡的关系,探究虾青素预处理对H_2O_2诱导HeLa细胞氧化应激的影响.通过CCK-8、活性氧探针染色、流式细胞术、蛋白质免疫印迹、实时荧光定量pcr等,分别检测细胞存活率和活性氧的积累、细胞凋亡、蛋白含量、基因相对表达量改变.结果表明虾青素预处理组细胞活力较对照组提高了29.54%以上且其可以将H_2O_2诱导的活性氧降低至对照水平,同时提高Nrf2蛋白表达量3倍之多,过氧化氢酶基因相对表达量1.5倍.说明虾青素可以有效缓解H_2O_2诱导的HeLa细胞氧化应激,从而抑制细胞凋亡.  相似文献   

12.
In this study, the anti-invasion effects of(-)-epigallocatechin-3-gallate(EGCG) mixed with ascorbic acid(Vc) on human lung carcinoma 95-D cells in vitro were examined and the synergism of the combination of EGCG and Vc was evaluated. Soft agar colony formation assay, cell migration assay, invasion assay, western blot analysis of NF-κB, in situ detection of cellular oxidative stress, and statistical analysis were assessed. The results showed that combining EGCG with Vc could inhibit clone forming rate of 95-D cell by 73.2%, reduce the migration ability of 95-D cell by 65.9%, and decrease the intracellular reactive oxygen species(ROS) level by 76.8%. The results of western blot proved that Vc enhanced the activity of EGCG in inhibiting NF-κB localization. It is speculated that the combination of EGCG and Vc can strongly suppress the proliferation and metastasis of lung carcinoma cells in a synergic manner, possibly with a mechanism associated with the scavenging of reactive oxygen species.  相似文献   

13.
Xu Maojun 《自然科学进展》2007,17(12):1397-1404
The endogenous signaling network of plants plays important roles in mediating the exogenous factor-induced biosynthesis of secondary metabolites. Nitric oxide (NO) has emerged as a key signaling molecule in plants recently. Numerous studies demonstrated that the main signaling molecules such as salicylic acid (SA), jasmonic acid (JA), reactive oxygen species (ROS), and NO were not only involved in regulating plant secondary metabolite biosynthesis but also interacted to form a complex signaling network by mutual inhibition and/or synergy. The recent progress in the signal network of plant secondary metabolite biosynthesis has been discussed in this paper. Furthermore, we propose a hypothetical model to show that NO might act as a potential molecular switch in the signaling network leading to plant secondary metabolite biosynthesis.  相似文献   

14.
The endogenous signaling network of plants plays important roles in mediating the exogenous factor-induced biosynthesis of secondary metabolites. Nitric oxide (NO) has emerged as a key signaling molecule in plants recently. Numerous studies demonstrated that the main signaling molecules such as salicylic acid (SA), jasmonic acid (JA), reactive oxygen species (ROS), and NO were not only involved in regulating plant secondary metabolite biosynthesis but also interacted to form a complex signaling network by mutual inhibition and/or synergy. The recent progress in the signal network of plant secondary metabolite biosynthesis has been discussed in this paper. Furthermore, we propose a hypothetical model to show that NO might act as a potential molecular switch in the signaling network leading to plant secondary metabolite biosynthesis.  相似文献   

15.
【目的】研究不同养殖系统对凡纳滨对虾肠道及水体微生物多样性的影响。【方法】以循环养殖系统和非养殖系统下凡纳滨对虾养殖水体及其肠道为研究对象,在养殖30d后采集样品,采用Illumina MiSeq高通量测序样品细菌16SrRNA基因V3+V4区,通过RDP11.3、Greengenes13.8、NCBI 16S Microbial和Customized batabase等数据库进行分析,阐述循环养殖系统的意义和微生物在其中的作用。【结果】养殖期间,不同养殖系统凡纳滨对虾均正常存活。将原始序列优化后对Clean序列进行分析,非循环系统下水体优质序列百分比约81%,肠道中约89%;循环系统下水体优质序列百分比为92%,肠道中为94%。两种养殖系统下水体和肠道细菌在纲水平占绝对优势的是变形菌纲,但各菌群丰度不同;不同的Alpha指数显示出物种间的差异性;通过系统发育树可以看出,不同养殖系统改变了凡纳滨对虾生境中的物种及发育关系,间接阐述微生物在养殖生境中的作用和意义。【结论】通过高通量测序揭示不同养殖系统中微生物菌群的差异以及多样性,对于凡纳滨对虾实际养殖具有指导作用,对阐述养殖过程中微生物和相关疾病的关系具有重要意义。  相似文献   

16.
本文旨在建立广西产中华芦荟的HPLC指纹图谱。研究以广西产中华芦荟为实验对象,采用HPLC指纹图谱分析法对广西不同产地的中华芦荟进行指纹图谱分析。结果10批中华芦荟药材指纹图谱相似度较好,各批药材指纹图谱间的相似度平均值在0.9以上;HPLC指纹图谱标定8个共有峰。本法HPLC指纹图谱的建立,初步为广西产中华芦荟的质量标准制定提供参考。  相似文献   

17.
卵形鲳鲹(Trachinotus ovatus)是一种生长快速且肉质鲜美的经济型海水养殖鱼类,但是近些年为满足人们的日常需求,在不断扩大养殖的同时病菌也逐渐泛滥。溶藻弧菌(Vibrio alginolyticus)是华南沿海地区海水养殖鱼类细菌性鱼病的主要致病菌之一,给水产养殖业带来巨大损失。本研究对黄连(Coptis chinensis Franch)的抗菌作用进行系统研究,目的是为由溶藻弧菌引起的爆发性细菌性鱼病的高效防治提供科学的用药依据。本研究采用二倍稀释法测定黄连水提物对卵形鲳鲹源溶藻弧菌的最低抑菌浓度(MIC)、最低杀菌浓度(MBC)和半数致死量(LD50),并使用BCA蛋白浓度测定试剂盒测定细菌超声破碎上清液中可溶性蛋白含量。结果表明,黄连水提物对溶藻弧菌具有明显的抑制作用,其对溶藻弧菌的MIC、MBC和LD50的值分别为7.800mg/mL、31.250mg/mL和15.625mg/mL。胞内可溶性蛋白含量变化的结果提示:黄连发挥抑菌作用的机制可能是通过损伤细菌的细胞壁导致细菌内容物的释放并引起菌体裂解死亡。黄连具有发展成为一种高效抗水产病害中草药制剂的潜力。  相似文献   

18.
The mechanisms for the production of hydrogen peroxide (H2O2) induced by abscisic acid (ABA) were investigated in suspension culture cells of tobacco BY-2 cells. The results showed that the immediate generation of H2O2, which was mainly derived from superoxide dismutase-catalyzed dismutation of superoxide radical, was significantly induced by ABA. Furthermore, treatment of the cultured tobacco cells with ABA resulted in a time-dependent quick increase in plasma membrane (PM) NADPH oxidase activity, which coincided on time and magnitude with the elevation in ABA-induced accumulation of H2O2. Moreover, these enhanced effects were pronouncedly inhibited by two NADPH oxidase inhibitor, diphenylene iodonium and imidazole, suggesting that PM NADPH oxidase is involved in the rapid accumulation of 2O2 in cultured tobacco cells. In addition, analysis of the expression level of NtrbohD, a PM NADPH oxidase gene in tobacco, by RT-PCR and protein gel blot revealed that the gene at both mRNA and protein levels was upregulated by ABA, indicating that NtrbohD participates in the ABA-stimulated rapid production of H2O2 in tobacco culture cells. Taken together, these findings suggest that ABA induces the rapid accumulation of reactive oxygen species via NADPH oxidase in suspension culture cells of tobacco, and that NADPH oxidase and H2O2 appear to be important components in ABA signal transduction pathway in plants.  相似文献   

19.
The changes of chlorophyll and malondialdehyde (MDA) contents, plasma membrane permeability confirmed that 0.1 and 1 mmol/L sodium nitroprusside (SNP), a donor of nitric oxide (NO) in vivo, could markedly alleviate the oxidative damage to wheat (Triticum aestivum L.) leaves induced by 150 and 300 mmol/L NaCl treatments, respectively. Further results proved that NO significantly enhanced the activities of Superoxide dismutase (SOD) and catalase (CAT), both of which separately contributed to the delay of O 2 and H2O2 accumulation in wheat leaves under salt stress. Meanwhile, the accumulation of proline was apparently accelerated. Therefore, these results suggested that NO could strongly protect wheat leaves from oxidative damage caused by salt stress.  相似文献   

20.
The mechanisms for the production of hydrogen peroxide (H2O2) induced by abscisic acid (ABA) were investigated in suspension culture cells of tobacco BY-2 cells. The results showed that the immediate generation of H2O2, which was mainly derived from superoxide dismutase-catalyzed dismutation of superoxide radical, was significantly induced by ABA. Furthermore, treatment of the cultured tobacco cells with ABA resulted in a time-dependent quick increase in plasma membrane (PM) NADPH oxidase activity, which coincided on time and magnitude with the elevation in ABA-induced accumulation of H2O2. Moreover, these enhanced effects were pronouncedly inhibited by two NADPH oxidase inhibitor, diphenylene iodonium and imidazole, suggesting that PM NADPH oxidase is involved in the rapid accumulation of 2O2 in cultured tobacco cells. In addition, analysis of the expression level of NtrbohD, a PM NADPH oxidase gene in tobacco, by RT-PCR and protein gel blot revealed that the gene at both mRNA and protein levels was upregulated by ABA, indicating that NtrbohD participates in the ABA-stimulated rapid production of H2O2 in tobacco culture cells. Taken together, these findings suggest that ABA induces the rapid accumulation of reactive oxygen species via NADPH oxidase in suspension culture cells of tobacco, and that NADPH oxidase and H2O2 appear to be important components in ABA signal transduction pathway in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号