首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
针对实际人脸识别系统需要满足实时性的应用需要,探讨了在图形处理器(GPU)硬件架构基础上的基于主成分分析(PCA)人脸识别系统设计与实现.结合统一计算设备架构(CUDA)的计算平台,通过将算法中耗时长、适合并行的部分过程映射到GPU上并行执行改进系统的加速实现.实验结果表明:相对于基于CPU平台的串行实现,基于GPU的实现在整体上能够获得约5倍的加速,而两个执行并行的模块能分别获得最大20倍和30倍的加速.  相似文献   

2.
针对当前算法优化研究一般局限于单一硬件平台、很难实现在不同平台上高效运行的问题,利用图形处理器(GPU)提出了基于开放式计算语言(OpenCL)的矩阵转置并行算法.通过矩阵子块粗粒度并行、矩阵元素细粒度并行、工作项与数据的空间映射和本地存储器优化方法的应用,使矩阵转置算法在GPU计算平台上的性能提高了12倍.实验结果表明,与基于CPU的串行算法、基于开放多处理(OpenMP)并行算法和基于统一计算设备架构(CUDA)并行算法性能相比,矩阵转置并行算法在OpenCL架构下NVIDIA GPU计算平台上分别获得了12.26,2.23和1.50的加速比.该算法不仅性能高,而且实现了在不同计算平台间的性能移植.  相似文献   

3.
为了能够有效提高基于时域的SAR回波仿真的运行速度,提出了一种基于图形处理器(GPU)架构的SAR回波仿真优化实现方法。该方法结合GPU的计算密度高、高度并行的特点并利用CUDA流在GPU上同时执行多个任务,实现任务并行、指令并行和数据并行的三重并行,极大地挖掘了回波模拟全过程的并行性,缩短了回波仿真的运算时间。实验结果表明,该方法相对于传统的CPU上的串行算法平均加速比达到128倍,可用于实时信号处理。  相似文献   

4.
为了能够有效提高基于时域的SAR回波仿真的运行速度,本文提出了一种基于GPU架构的SAR回波仿真优化实现方法。该方法结合GPU的计算密度高、高度并行的特点并利用CUDA流在GPU上同时执行多个任务,实现任务并行、指令并行和数据并行的三重并行,极大地挖掘了回波模拟全过程的并行性,缩短了回波仿真的运算时间。实验结果表明,该方法相对于传统的CPU上的串行算法平均加速比达到128倍,可用于实时信号处理。  相似文献   

5.
提出一种基于图形处理器(GPU)的对称正定稀疏矩阵复线性方程组迭代算法. 首先, 采用基于GPU的共轭梯度法和双共轭梯度法, 实现GPU上的矩阵向量乘操作, 并充分优化相应的算法步骤; 其次, 实现基于GPU的对角元预处理、 不完全Cholesky分解和对称超松弛3种预处理方法, 提出一种基于GPU的求解三角方程组并行算法; 最后, 实验分析各种预处理方法的优劣. 实验结果表明, 该算法较CPU串行迭代算法与经典的直接法速度提升较大, 最高可达到76倍的加速比.  相似文献   

6.
矩量法(MOM)是求解电磁场散射和辐射问题的一种常用数值方法,当未知量数目比较大时,其计算需要大量的时间开销.引入计算统一设备架构(CUDA)技术,在图形处理器(GPU)上实现并行MOM,并且与传统的中央处理器(CPU)串行计算比较,验证GPU计算结果的准确性.在未知量数目不同时,分析MOM中的阻抗矩阵填充和共轭梯度(CG)迭代法的加速情况.当未知量数目较大时,计算速度与CPU相比可提升数十倍.  相似文献   

7.
在CPU串行运算模式下实现大规模矩阵求逆是一个非常耗时的过程。为了解决这一问题,基于NVIDIA公司专为GPU(图形处理器)提供的CUDA(计算统一设备架构),从新的编程角度出发,利用GPU多线程并行处理技术,将矩阵求逆过程中大量的数据实现并行运算,从而获得了较大的加速比。同时,根据程序的执行结果,分析了GPU的单精度与双精度的浮点运算能力及其优、劣势。最后,通过分析数据传输时间对GPU性能的影响,总结出适合GPU的算法特征。  相似文献   

8.
将自适应压力迭代法修正的Sola算法与相场模型相结合,建立过冷熔体在强迫流动状态下枝晶生长的Sola-相场模型.针对传统方法求解多场耦合相场模型时存在的计算量大,计算时间长,计算效率低等问题,提出基于CUDA+GPU软硬件体系结构的高性能计算方法.以高纯丁二腈(SCN)过冷熔体为例,在CPU+GPU异构平台上实现了存在流动时凝固微观组织演化过程的并行求解,并对基于CPU+GPU平台与CPU平台的计算结果及计算效率进行比较.结果表明,当计算规模达到百万量级时,与CPU平台上的串行算法相比,在CPU+GPU异构平台上达到了24.39倍的加速比,大大提高计算效率,并得到与串行计算相一致的结果.  相似文献   

9.
针对最短路径算法处理大规模数据集低效的问题,提出了基于图形处理器(Graphics Processing Unit,GPU)加速的全源对最短路径并行算法.首先通过优化矩阵乘法算法实现了在工作组内和组间进行并行运算数据,然后减少了非规则行造成的工作项分支,最后降低了工作项对邻接矩阵计算条带存储资源的访问延时.实验结果表明,与基于AMD Ryzen5 1600X CPU的串行算法、基于开放多处理(Open Multi-Processing, OpenMP)并行算法和基于统一计算设备架构(Compute Unified Device Architecture, CUDA)并行算法相比,最短路径并行算法在开放式计算语言(Open Computing Language, OpenCL)架构下NVIDIA GeForce GTX 1 070计算平台上分别获得了196.35、36.76和2.25倍的加速比,验证了提出的并行优化方法的有效性和性能可移植性.  相似文献   

10.
开发了基于图形处理器(GPU)的Cholesky分解并行算法,应用于模态计算程序中,对计算进行加速.算例测试表明该算法相对串行算法计算性能大幅提升,且加速比随矩阵阶数增加而增加,与串行程序相比加速比可达到19.6,此时GPU浮点运算能力达到298Gflops.GPU程序固有频率计算结果与Abaqus计算结果的误差在2%以内,具有足够的计算精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号