首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 635 毫秒
1.
当前GPU(图形处理器),即使是中端服务器配置的中端GPU也拥有强大的并行计算能力.不同于近期的研究成果,中端服务器可能配置有几块高端CPU和一块中端GPU,GPU能够提供额外的计算能力而不是提供比CPU更加强大的计算能力.本文以中端工作站上的CoOLAP(协同OLAP)为中心,描述如何使中端GPU与强大的CPU协同以及如何在计算均衡的异构平台上分布数据和计算以使Co-OLAP模型简单而高效.根据实际的配置,基于内存容量,GPU显存容量,数据集模式和订制的AIR(数组地址引用)算法提出了最大高性能数据分布模型.CoOLAP模型将数据划分为驻留于内存和GPU显存的数据集,OLAP计算也划分为CPU和GPU端的自适应计算负载来最小化CPU和GPU内存之间的数据传输代价.实验结果显示,在SF=20的SSB(星形模型基准)测试中,两块至强六核处理器的性能略优于一块NVIDA Quadra 5 000GPU(352个cuda核心)的处理性能,Co-OLAP模型可以将负载均衡分布在异构计算平台并使每个平台简单而高效.  相似文献   

2.
当前GPU(图形处理器),即使是中端服务器配置的中端GPU也拥有强大的并行计算能力.不同于近期的研究成果,中端服务器可能配置有几块高端CPU和一块中端GPU,GPU能够提供额外的计算能力而不是提供比CPU更加强大的计算能力.本文以中端工作站上的Co-OLAP(协同OLAP)为中心,描述如何使中端GPU与强大的CPU协同以及如何在计算均衡的异构平台上分布数据和计算以使Co-OLAP模型简单而高效.根据实际的配置,基于内存容量,GPU显存容量,数据集模式和订制的AIR(数组地址引用)算法提出了最大高性能数据分布模型.Co-OLAP模型将数据划分为驻留于内存和GPU显存的数据集,OLAP计算也划分为CPU和GPU端的自适应计算负载来最小化CPU和GPU内存之间的数据传输代价.实验结果显示,在SF=20的SSB(星形模型基准)测试中,两块至强六核处理器的性能略优于一块NVIDA Quadra 5 000GPU(352个cuda核心)的处理性能,Co-OLAP模型可以将负载均衡分布在异构计算平台并使每个平台简单而高效.  相似文献   

3.
图形处理单元(GPU)已经成为当今的主流计算系统的一个组成部分,现代GPU不仅是一个功能强大的图形引擎,也是一个高度并行的可编程处理器,GPU的峰值运算和内存带宽往往大幅超出其CPU所对应的峰值和内存带宽。本文介绍了基于GPU通用计算框架的JACKET加速MATLAB的计算仿真方法,通过FFT算法得出仿真结果,分析在CPU和GPU运行环境下的GFLOPS和加速比,最后得出基于GPU的MATLAB计算仿真程序运行效率在JACKET的加速下大大提高了。  相似文献   

4.
面向CPU+GPU异构计算的SIFT   总被引:1,自引:0,他引:1  
依据图形处理器(GPU)计算特点和任务划分的特点,提出主从模型的CPU+GPU异构计算的处理模式.通过分析和定义问题中的并行化数据结构,描述计算任务到统一计算设备架构(CUDA)的映射机制,把问题或算法划分成多个子任务,并对划分的子任务给出合理的调度算法.结果表明,在GeForce GTX 285上实现的尺度不变特征变换(SIFT)并行算法相比CPU上的串行算法速度提升了近30倍.  相似文献   

5.
将自适应压力迭代法修正的Sola算法与相场模型相结合,建立过冷熔体在强迫流动状态下枝晶生长的Sola-相场模型.针对传统方法求解多场耦合相场模型时存在的计算量大,计算时间长,计算效率低等问题,提出基于CUDA+GPU软硬件体系结构的高性能计算方法.以高纯丁二腈(SCN)过冷熔体为例,在CPU+GPU异构平台上实现了存在流动时凝固微观组织演化过程的并行求解,并对基于CPU+GPU平台与CPU平台的计算结果及计算效率进行比较.结果表明,当计算规模达到百万量级时,与CPU平台上的串行算法相比,在CPU+GPU异构平台上达到了24.39倍的加速比,大大提高计算效率,并得到与串行计算相一致的结果.  相似文献   

6.
采用离散元素法(discrete element method, DEM)进行颗粒系统运动仿真时,其模拟计算量大、计算效率低下,所采用的传统中央处理器(central processing unit, CPU)并行计算模型难以实现较大规模模拟。文章提出了一种基于图形处理单元(graphics processing unit, GPU)和统一计算设备架构(compute unified device architecture, CUDA)的并行计算方法;以球磨机的介质运动仿真为例,利用DEM方法结合CUDA并行计算模型,充分利用GPU众核多线程的计算优势,同时将颗粒属性信息存入GPU的常量存储器,减少信息读取的时滞,将筒体和衬板视为圆柱面和平面,简化了筒体与颗粒的接触判断,实现每个线程处理1个颗粒的相关计算,大幅提高计算速度;对颗粒堆积、筒体内2种尺寸颗粒运动进行仿真,并与基于CPU并行计算的结果进行对比。研究结果表明:在同等价格的硬件条件下,该文的方法可以实现10倍以上的加速比;对于含有复杂几何模型的仿真,如多尺寸颗粒和带衬板筒体的仿真,加速比会减少,但仍然可以实现数倍的加速。  相似文献   

7.
研究蒙特卡罗控制变量方法在CPU(central processing unit)集群和GPU(graphic processing unit)计算环境中的实现问题.以离散取样的随机波动率下的算术平均亚式期权为例,选取合适的控制变量,分别研究了在CPU集群和GPU计算中算法与硬件并行加速两者的运算效率,并讨论了模型参数的变化对计算结果的影响.数值试验表明采用算法与硬件加速相结合的方法可以极大提高计算效率、缩短运算时间.  相似文献   

8.
在CPU串行运算模式下实现大规模矩阵求逆是一个非常耗时的过程。为了解决这一问题,基于NVIDIA公司专为GPU(图形处理器)提供的CUDA(计算统一设备架构),从新的编程角度出发,利用GPU多线程并行处理技术,将矩阵求逆过程中大量的数据实现并行运算,从而获得了较大的加速比。同时,根据程序的执行结果,分析了GPU的单精度与双精度的浮点运算能力及其优、劣势。最后,通过分析数据传输时间对GPU性能的影响,总结出适合GPU的算法特征。  相似文献   

9.
近年来,图形处理器(GPU)的发展日益成熟,应用范围不在局限于计算机图形学本身,已逐步扩展到通用数值计算领域.本文介绍了最新GPU用于通用计算的原理和方法,并在图像处理和科学计算方面对GPU和CPU算法进行了计算速度的对比研究,实验结果表明GPU在通用计算领域相对于CPU具有明显优势.  相似文献   

10.
基于GPU的弹性图像配准方法   总被引:2,自引:0,他引:2  
通常的弹性配准技术因其计算强度大,消耗时间长,难以满足实时应用的要求.新一代图形处理器(GPU)以其用户友好的可编程性和出色的并行计算能力,为解决该问题提供了新的途径.根据GPU的自身特点,以薄板样奈插值作为变换模型,构建了弹性配准计算平台.对二维单模态和多模态的两组图像进行实验,结果表明,相比于CPU,利用GPU可以更为迅速地获得变换参数,对于大尺寸、高分辨率或者多局部形变的图像,GPU的处理速度超出CPU 1个数量级以上.  相似文献   

11.
多层快速多极子分析三维复杂目标的谐振区电磁散射特性   总被引:1,自引:0,他引:1  
用多层快速多极子方法(MLFMA)和预优的广义最小残差法(GMRES)计算了三维复杂目标的谐振区电磁散射特性。对于在谐振区中5~10个波长目标的电磁散射体,MLMFA比矩量法(MOM)和快速多极子法(FMM)占用内存少很多,计算速度也更快;本文讨论了MLFMA中重要参数多极子数L的优化选取,同时采用了预优的GMRES方法求解MLFMA大规模矩阵方程,这比采用传统的共轭梯度(CG)法具有更大的优越性。最后对某导弹模型和典型隐身飞机模型进行了谐振区散射特性的高效求解分析。  相似文献   

12.
把广义最小余数法(GMRES)和矩量法(MOM)结合起来研究三维介质目标的电磁散射问题。对三维介质目标的远区散射场进行了计算,结果与高斯消去法和共轭梯度法(CGM)的计算结果进行了比较,它们吻合的很好,而GMRES方法的计算效率大大提高,说明GMRES方法和MOM的结合是求解三维电磁散射问题的有效途径之一。  相似文献   

13.
基于数值方法(MOM)与基尔霍夫近似(KA)相结合的混合算法计算了二维随机粗糙面与其上方三维双立方体的复合散射特性。首先建立了随机粗糙面与其上方三维双目标的复合模型,将目标划分为MOM区域,粗糙面划分为KA区域,并采用Monte-carlo方法模拟真实粗糙地面。在复合散射场的求解中,首先求出在仅有初始入射场时多目标表面的感应电流;其次,将目标表面感应电流产生的散射场与外部入射场作为KA区域的入射场,求出KA区域表面的感应电流;最后将KA区域的感应电流产生的散射场与外部入射场作为MOM区域的入射场,利用导体目标表面的狄利克莱边界条件求出目标表面电流以及电流系数,并进一步求解出散射场。通过减小了粗糙面各面元的相互耦合及体-面的高阶耦合作用,极大提升了计算速率。在大小尺寸为L_x×L_y=100λ×100λ的粗糙面与棱边长度为l=2λ的立方体目标复合计算中,使用MoM算法产生了747 886个未知量,计算时间为8 821.5s;而使用MOM-KA混合算法产生未知量为26 868个,计算时间为423.8s,仿真结果同时验证了MOM-KA混合算法的准确性。最后,详细讨论了均方根高度、目标间距、高度及立方体尺寸及对复合散射系数的影响。  相似文献   

14.
以3阶为例讨论高阶基函数矩量法,将3阶基函数应用到二维理想导体散射问题的6个积分方程中,分析了计算误差。在电大导体散射问题中,讨论了该方法的计算误差与未知量个数之间的关系,并与传统的脉冲基和三角基方法进行了比较。数值计算结果表明,高阶基函数矩量法具有更高的精度和收敛速度,在精度相同的情况下,比传统的低阶方法具有更高的效率。  相似文献   

15.
作者采用混合位积分方程(MPIE)和分别基于RWG函数以及四面体元基函数的矩量法分析计算了埋地复杂目标的电磁散射问题,利用二级离散复镜像(DCIM)和广义函数束(GPOF)相结合的方法求解Sommerfeld积分,很好的解决了多层媒质中电磁散射计算中的棘手问题,其方法简练、精确、高效,数值分析结果与有关文献吻合很好,证实了该方法的正确性和通用性.此外,该文还通过计算比较了不同观察点、不同埋地深度及不同目标介质参数的电磁散射特性.  相似文献   

16.
为提高瞬变电磁法对地的探测效果,从瞬变电磁场在介质中传播的特性出发,对回线源瞬变电磁响应进行了理论上的分析,推导出了以反射系数数序列矩阵为未知项的线性方程组,提出了用线性规划法求取反射系数序列,并给出了求解的方法和步骤.设计了两个理论模型,用自行编制的软件对理论模型进行测试和处理,并画出了以反射系数为参量的地电模型剖面图.计算结果表明,算法可靠,剖面图示清晰,达到了预期的效果.该研究成果对瞬变电磁法模拟地震资料解释的研究和对地成像方法有参考价值.  相似文献   

17.
为进一步提高电大尺寸目标散射求解能力,该文将一种新的基于曲边三角形的高阶叠层矢量基函数运用到矩量法中,并与多层快速多极子方法结合,分析了电大尺寸目标的电磁散射特性。与低阶基函数相比,在计算精度相同的情况下,高阶叠层基函数所需的未知量数目约为零阶其函数的40%。计算实例表明,该方法具有较高的精确性和有效性。  相似文献   

18.
为提高矩量法求解积分方程的精度,基于Laguerre多项式提出一种新型的高阶基函数法,将其应用于2维导体的电磁散射问题的求解.将计算结果与低阶矩量法和解析解进行比较可知:此高阶矩量法在较低的剖分情况下,具有较高的计算精度,表明该方法具有有效性和精确性.将此新型的高阶基函数法应用于电大导体散射目标时,其计算结果仍具有较高的精度.  相似文献   

19.
本文提出了一种有效降低矩量法分析对称电磁模型计算复杂度的方法。通过对激励向量[ V]的分解和重组,使得几何对称结构具有对称的电流分布,从而只需对一部分电流进行求解,大大减少了未知量数目。数值仿真实例验证了所提出方法的有效性与精确性。  相似文献   

20.
采用基于频域矩量法(MOM)与解析法的Ansoft Designer软件,计算、分析了导体圆盘基底烧结铁氧体隐身层因裂纹介质参数出现变异的雷达X波段高频电磁特性.采用V极化波和H极化波2种情况入射,分别计算与分析,得出:在8-12 GHz 频带内,因裂纹产生介质参数变异对隐身电磁性能影响较明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号