首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用致密性定理获得有界数列{y_n}收敛的一个充分条件:∨ε>0,■N∈Z+,使得当n>Z时,不等式yn-yn-1<ε恒成立。并发现任意项级数收敛的一个判定定理:如果级数sum from n=1 to ∞ a_n有界,且limn→∞a_n=0,则该级数收敛。由此获得:级数sum from n=1 to ∞ sin~(1+2s/t)=n/n~α收敛,其中s∈Z,t∈Z+,0<α≤1。并进行推广:如果s∈Z,t∈Z~+,0<α≤1,则级数sum from n=1 to ∞sin~1+2s/t)(an)/n~α收敛。再获得一个一般性结论:设有界函数f(n)满足0≤f(n)0,k,l∈Z。  相似文献   

2.
在判定正项常数项级数的收斂时,普通以达朗贝尔比较判别法最为方便,但当它失效的时候,就要用到比较困难的判别法。例如拉阿伯、高斯、庫墨尔等判别法,亦就是说在(?)a_(n+1)/a_n=1时,就需要从a_(n+1)/a_n=1+(?)上来打(?)的主意,然后判定其收斂与否。现在我从(a_(n+1)/a_n)~n下手,来導出一个比较判别法,因为当a_(n+1)/a_n→1而a_(n+1)/a_n=1+(?)  相似文献   

3.
判别级数sun from n=1 to ∞ u_n的绝对收剑性,主要归结为判别正项级数sum from n=1 to ∞ │u_n│的敛散性,正项级数敛散性判别法有各种各样的形式本文给出利用一阶导数判别级数敛散性的两种新方法  相似文献   

4.
本文给出了勒襄特(Legendre)级数sum from n=0 to ∞a_nP_n(z)在收敛椭园E_p上一点z_0=cosh(μ iβ_0)收敛的充分必要条件为级数sum from n=0 to ∞δ_ne~(nβ0~i)收敛,其中δ_n=n~(-(1/2))e~(nμ)a_n。本文证明了勒襄特级数的亚倍尔(Abel)型定理:若级数sum from n=0 to ∞a_nP_n(z)的收斂椭园为E_μ,z_0=cosh(μ iβ_0),且sum from n=0 to ∞a_nP_n(z_0)收斂,则sum from n=0 to ∞a_nP_n(z)=sum from n=0 to ∞a_nP_n(z_0),这里z→z_0是在E_μ内沿与E_μ正交的双曲线H_(β_0)进行。本文还证明了勒襄特级数的刀培(Tauber)型定理:设级数sum from n=0 to ∞a_nP_n(z)的收斂椭园为E_μ,z_0=cosh(μ iβ_0)为E_μ上一定点,令δ_n=n~(-(1/2))e~(nμ)a_n,如果δ_n=o(1/n),且sum from n=0 to ∞a_nP_n(z)=S,这里z→z_0是在E_μ内沿H_(β_0)进行,sum from n=0 to ∞a_nP_n(z_0)收敛,其和为S。  相似文献   

5.
本文主要结果如下:利用无穷大量的阶和阶数以及新的广义数的概念和性质,建立了正项级数敛散性的下述判别法:广义数判别法对于正项级数公项f(n),若(i)f(x)不→0(x→ ∞),则级数sum from n=1 to ∞(f(n))发散;(ii)f(x)→0(x→ ∞)而1'.阶数O~m(1/(f(x)))≥1 sum from i=1 to(p-1)(α_i βα_p)(F_pβ~(x)的阶数)其中F_pβ~(x)=xlogx……(log…logx)~β(?);β>1,p 都可任意选定,或2'1/(f(x))的阶(次)高于或等于F_pβ~(x)的,则级数sum from n=1 to ∞(f(n))收敛;(iii)f(x)→0(x→ ∞),而1'阶数O~m(1/(f(x)))≤1 sum from i=1 to p α_i(F_p(x)的阶数)其中F_p(x)=xlogx…(log…logx)(?),p 可任意选定,或2'1/(f(x))的阶(次)低于或等于F_p(x)的, 则级数sum from n=1 to ∞(f(n))发散。此法应用很广,一般的判别方法,如柯西判别法,达朗贝尔、拉贝以及高斯判别法等,所能适用的本法都适用,它们所不适用的本法也能适用,而且方法总的说来比较单一,只须考虑阶数和阶(次)。  相似文献   

6.
设μ为正常数。令■这里,当n→∞时,■则勒襄特级数sum from n=0 to ∞a_nP_n(z)=a_0 a_1P_1(z) … a_nP_n(z) …以E_μ为其收歛椭圆。在E_μ内令这个级数的和为f(z),并用f(z)表示从它所产生的完全解析函数。如果f(z)在E_μ上—点z_0处解析,则sum from n=0 to ∞a_nP_n(z)在点z_0处收歛。从此即可推出:如果sum from n=0 to ∞a_nP_n(z)在E_μ上一点z_0处发散,则点z_0必为f(z)的奇点。  相似文献   

7.
一、引言如所周知,如果X_1,X_2,…,i、i、d,EX_1=0,EX_1~2=σ~2<∞,则对任何—∞相似文献   

8.
如果a_n=(1/π)integral from -πto πf(x)Cos nx dx(n=0,1,2,…)b_n=(1/π)integral from -πto πf(x)Sin nxdx(n=1,2,…)则称级数(a_0/2) sum from n=1 to ∞(a_n Cos nx b_n Sin nx)为f(x)的Foureir 级数。据Euler 公式e~(ix)=Cos x iSin x,f(x)的Fourier 级数可以写成复数形式:  相似文献   

9.
本文的主要结果是证明了下述定理定理:设f(x)=sum from n=0 to ∞a_nJ_n(x)的收敛半径不小于1,其中a_n终规为正,即存在正整数N,当n≥N时,有a_n≥0。且sum from n=0 to ∞a_nJ_n′(1)=…=sum from n=0 to ∞a_nJ_n~(h-1)(1)=0 记δ_n=(a_n)/(2~nn!) 则当∞=k时,I(k)存在的充要条件是∑n~(h-1)δ_nlogn收敛。当k<ω相似文献   

10.
判别链     
利用了库莫尔(Kummer)判别法,可以得出一个比高斯(Gauss)判别法更为普遍的判别法来: 如果一正项级数sum from n=1 ∞ U_n,其相隣二项的比满足:这里则当: 有界时,如λ_s>1,则级数收敛,而当λ≤1时,则级数发散。 上述判别法当s=0时,便是高斯判别法,而当s分别取值0,1,2,……时,便可得到无穷多个判别法,形成一“判别链”,一般来说,当第s个判别法对某一级数失效时,第s+1个判别法有可能判别该级数是否收敛。  相似文献   

11.
本文在对系数的幅角加以限制的条件下研究了Bieberbach猜想,得到了下述结果, 1·若f(z)=z+sum from n-2 to ∞ a_nz~n∈S,arga_n=θ_n, φ_n=θ_(n+1)-θ_n-θ_2, 如果α_n≤|φ_n|,n≥7,则|a_n|相似文献   

12.
王娟 《科技资讯》2012,(8):196+198-196,198
实值级数sum from n=1 to ∞的和,定义为lim n→∞ S_n=lim n→∞ (sum from k=1 to n(a_)),对于收敛级数的求和方法,常用的有裂项相消法,利用幂级数在收敛区间内的逐项可积,逐项可导等方法来简化计算。本文给出了数学归纳法、Abel定理、幂级数展开式、复数级数展开式等方法来解决收敛级数的求和问题。  相似文献   

13.
“级数求和”也可以叫“数列求和”。如果级数sum from k=1 to ∞(a_k=a_1 a_2 … a_n ……)的部分和序列S_n=a_1 a_2 … a_n 有极限lim S_n 存在,就把这个极限叫做级数sum from k=1 to ∞(a_k) 的和。在中学数学里,曾提到许多数列的求和问题,例如无穷递缩等比数列的求和公式为:  相似文献   

14.
本文给出了正项级数收敛性的一个新的比值判别法。这个判别法比达郎伯尔判别法、歌西判别法和拉阿伯判别法都强,而且使用也方便。 设是一个正项级数,简称级数记  相似文献   

15.
§1.总说我们记在[-π,π]上是勒贝格可积的,以2π为周期的周期函数的全体为L_(2π)。设f(x)∈L_(2π),其富里埃级数是?(f,x)=a_0/2+sum from n=1 to ∞(1/n)(a_ncosnx+b_nsinnx)=a_0/2+sum from n=1 to ∞(1/n)A_n(x) (1)级数(1)的共轭级数是?(f,x) = sum from n=1 to ∞(1/n)(-b_ncosnx+a_nsinnx) 我们还将考虑级数  相似文献   

16.
17.
证明了如下定理: 设f(z)=sum from n=1 to ∞(1/n)a_nP_m(z)为一整函数,P_n(z)为Legendre多项式,λ为一正数,如果(n+1~λ/n)a_n/a_(n+1)|为n的终归单增函数,则有 (α,f)<{1+0(1)}λ~(-λ-1)Γ(1+λ)e~λv(α,f)μ(α,f);■  相似文献   

18.
设f(z)=z sum from n=2 to ∞ a_nz~n是单位园|z|<1内的正则单叶函数,以S记其族。龚升在中证明:若|a_2|<1.635则|a_n|相似文献   

19.
对于sum from n=1 to ∞ 1/n~(2m)(m∈Z~+),当n-1时,有sum from n=1 to ∞ 1/n~2=π~2/6,并且对它有着许多种不同的证法.通过博里叶(Fourier)级数以及逐项积分,得到关于sum from n=1 to ∞ 1/n~(2m)(m∈Z~+)的和的系数的一个递推关系式,并给出当m=1,2,3,4,5时的结果。  相似文献   

20.
设f(x)是以2π为周期的周期连续函数; f(x)~a_0/2+sum from n=1 to ∞(a_n cosnx+b_n sinnx)。(1)设S_n(x)是这个富里埃级数的部分和,E_n(f)是f(x)的阶不高于n的最佳逼近。在一般情形,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号