首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用5-溴-2-脱氧尿嘧啶(BrdU)标记DNA,ABC免疫细胞化学的方法,观察成年画眉(Garrulax canorus)和白腰文鸟(Lonchura striata)端脑神经前体细胞的产生和分布特点.结果如下:1)胸肌注射BrdU短时程组(存活1~5 d),在端脑室带区外侧壁(LVZ)有大量的新生标记细胞,并在纹状体腹侧的室带区(VZ)形成标记细胞增殖热点;2)注射BrdU长时程组(存活15~30 d),在画眉高级发声中枢(HVc)、HVc壳、高位发声运动中枢———古纹状体栎核(RA)内有一些新生标记细胞,在端脑靠近LVZ的区域有较多的标记细胞,但在白腰文鸟的HVc、HVc壳、RA内未见到标记细胞.结果表明:1)新生神经细胞起源于端脑VZ;2)画眉每天都有一些新生神经前体细胞迁移到HVc和RA内,而白腰文鸟成年后HVc和RA很少有新生神经细胞代替旧的神经元,这与白腰文鸟成年后不需要学习新语句的行为是一致的.推测在画眉HVc和RA内能不断地产生新生标记细胞,这可能与它们需要不断学习新的鸣啭语句有关,而且这些新生的细胞在雄、雌画眉中可能具有同样的功能.  相似文献   

2.
Kao MH  Doupe AJ  Brainard MS 《Nature》2005,433(7026):638-643
Cortical-basal ganglia circuits have a critical role in motor control and motor learning. In songbirds, the anterior forebrain pathway (AFP) is a basal ganglia-forebrain circuit required for song learning and adult vocal plasticity but not for production of learned song. Here, we investigate functional contributions of this circuit to the control of song, a complex, learned motor skill. We test the hypothesis that neural activity in the AFP of adult birds can direct moment-by-moment changes in the primary motor areas responsible for generating song. We show that song-triggered microstimulation in the output nucleus of the AFP induces acute and specific changes in learned parameters of song. Moreover, under both natural and experimental conditions, variability in the pattern of AFP activity is associated with variability in song structure. Finally, lesions of the output nucleus of the AFP prevent naturally occurring modulation of song variability. These findings demonstrate a previously unappreciated capacity of the AFP to direct real-time changes in song. More generally, they suggest that frontal cortical and basal ganglia areas may contribute to motor learning by biasing motor output towards desired targets or by introducing stochastic variability required for reinforcement learning.  相似文献   

3.
Tumer EC  Brainard MS 《Nature》2007,450(7173):1240-1244
Significant trial-by-trial variation persists even in the most practiced skills. One prevalent view is that such variation is simply 'noise' that the nervous system is unable to control or that remains below threshold for behavioural relevance. An alternative hypothesis is that such variation enables trial-and-error learning, in which the motor system generates variation and differentially retains behaviours that give rise to better outcomes. Here we test the latter possibility for adult bengalese finch song. Adult birdsong is a complex, learned motor skill that is produced in a highly stereotyped fashion from one rendition to the next. Nevertheless, there is subtle trial-by-trial variation even in stable, 'crystallized' adult song. We used a computerized system to monitor small natural variations in the pitch of targeted song elements and deliver real-time auditory disruption to a subset of those variations. Birds rapidly shifted the pitch of their vocalizations in an adaptive fashion to avoid disruption. These vocal changes were precisely restricted to the targeted features of song. Hence, birds were able to learn effectively by associating small variations in their vocal behaviour with differential outcomes. Such a process could help to maintain stable, learned song despite changes to the vocal control system arising from ageing or injury. More generally, our results suggest that residual variability in well learned skills is not entirely noise but rather reflects meaningful motor exploration that can support continuous learning and optimization of performance.  相似文献   

4.
鸣唱控制系统的高级发声中枢HVC(high vocal center)是发声运动通路和前端脑通路的始端,是发声行为的起始控制脑区,亦可接受听觉信号的输入及反馈,是鸣禽鸣唱调控最为重要的脑区.以往研究表明,雄激素及其代谢产物对鸣禽鸣唱控制有重要作用.去势显著改变鸣禽体内激素含量,进而影响鸣禽鸣曲稳定性,但其具体机制尚未阐明.我们运用全细胞膜片钳记录法,在离体细胞水平研究了去势引起的雄激素水平降低对HVC不同神经元电生理特性的影响.研究结果显示,去势组与对照组相比,投射神经元HVCRA,HVCX膜输入电阻减小,膜时间常数降低,动作电位后超极化幅值升高及达到峰值时间延长,表明雄激素可以提高两类投射神经元的兴奋性. 综上所述,雄激素可以一定程度上提高HVC神经元的兴奋性,雄激素可增强HVC对发声运动通路(vocal motor pathway,VMP)的控制,抑制前端脑通路(anterior forebrain pathway,AFP)来实现维持鸣曲的稳定.  相似文献   

5.
Prather JF  Peters S  Nowicki S  Mooney R 《Nature》2008,451(7176):305-310
Brain mechanisms for communication must establish a correspondence between sensory and motor codes used to represent the signal. One idea is that this correspondence is established at the level of single neurons that are active when the individual performs a particular gesture or observes a similar gesture performed by another individual. Although neurons that display a precise auditory-vocal correspondence could facilitate vocal communication, they have yet to be identified. Here we report that a certain class of neurons in the swamp sparrow forebrain displays a precise auditory-vocal correspondence. We show that these neurons respond in a temporally precise fashion to auditory presentation of certain note sequences in this songbird's repertoire and to similar note sequences in other birds' songs. These neurons display nearly identical patterns of activity when the bird sings the same sequence, and disrupting auditory feedback does not alter this singing-related activity, indicating it is motor in nature. Furthermore, these neurons innervate striatal structures important for song learning, raising the possibility that singing-related activity in these cells is compared to auditory feedback to guide vocal learning.  相似文献   

6.
Brainard MS  Doupe AJ 《Nature》2000,404(6779):762-766
Birdsong, like speech, is a learned vocal behaviour that relies greatly on hearing; in both songbirds and humans the removal of auditory feedback by deafening leads to a gradual deterioration of adult vocal production. Here we investigate the neural mechanisms that contribute to the processing of auditory feedback during the maintenance of song in adult zebra finches. We show that the deleterious effects on song production that normally follow deafening can be prevented by a second insult to the nervous system--the lesion of a basal ganglia-forebrain circuit. The results suggest that the removal of auditory feedback leads to the generation of an instructive signal that actively drives non-adaptive changes in song; they also suggest that this instructive signal is generated within (or conveyed through) the basal ganglia-forebrain pathway. Our findings provide evidence that cortical-basal ganglia circuits may participate in the evaluation of sensory feedback during calibration of motor performance, and demonstrate that damage to such circuits can have little effect on previously learned behaviour while conspicuously disrupting the capacity to adaptively modify that behaviour.  相似文献   

7.
鸣禽的鸣唱控制系统已成为研究神经系统与学习、行为和发育相关的一个重要模型.鸣禽的鸣啭表现出一种复杂的学习过程.鸣禽学习鸣啭的过程可以分为两个阶段.在感觉学习期,幼鸟必须听到成鸟的鸣啭,并形成鸣啭模板记忆;在感觉运动学习期,鸣禽通过听觉反馈与模板匹配逐步建立稳定的鸣啭.该文对近年来鸣禽鸣啭学习过程中的新生神经元及长时程增强研究进展进行综述.  相似文献   

8.
应用在体电生理方法研究了去势前后成年雄性斑胸草雀发声运动通路中HVC-RA 突触的可塑性变化,进一步探讨雄激素在调节鸣唱行为中的作用和机制.结果表明:低频刺激可引起 HVC-RA突触群体峰电位幅度的短时程抑制(Short-term depression, STD),高频刺激可引起群体峰电位幅度的长时程抑制(Long-term depression, LTD).而去势后30 d,鸣曲稳定时再给予同样的条件刺激,发现无论低频或高频刺激,HVC-RA 突触的短时程抑制和长时程抑制现象同时消失.研究结果显示:鸣曲稳定性可能依赖于HVC-RA通路的突触可塑性,雄激素在维持鸣曲稳定过程中发挥重要作用.  相似文献   

9.
应用免疫组化方法对鸣禽粟鹀(Emberiza rutila)鸣啭控制核团内GABA能神经元的分布进行了研究,在高级发声中枢(HVC,high vocal center),古纹状体粗核(RA,the robust nucleus of the archistrialum),X区(Arca X)3个前脑核团内有GABA样免疫反应出现.HVC和RA中GABA能神经元胞体大小存在性别和季节间的差异.结果提示GABA能神经元可能参与了鸣禽鸣啭的产生和鸣啭学习。  相似文献   

10.
Hahnloser RH  Kozhevnikov AA  Fee MS 《Nature》2002,419(6902):65-70
Sequences of motor activity are encoded in many vertebrate brains by complex spatio-temporal patterns of neural activity; however, the neural circuit mechanisms underlying the generation of these pre-motor patterns are poorly understood. In songbirds, one prominent site of pre-motor activity is the forebrain robust nucleus of the archistriatum (RA), which generates stereotyped sequences of spike bursts during song and recapitulates these sequences during sleep. We show that the stereotyped sequences in RA are driven from nucleus HVC (high vocal centre), the principal pre-motor input to RA. Recordings of identified HVC neurons in sleeping and singing birds show that individual HVC neurons projecting onto RA neurons produce bursts sparsely, at a single, precise time during the RA sequence. These HVC neurons burst sequentially with respect to one another. We suggest that at each time in the RA sequence, the ensemble of active RA neurons is driven by a subpopulation of RA-projecting HVC neurons that is active only at that time. As a population, these HVC neurons may form an explicit representation of time in the sequence. Such a sparse representation, a temporal analogue of the 'grandmother cell' concept for object recognition, eliminates the problem of temporal interference during sequence generation and learning attributed to more distributed representations.  相似文献   

11.
Decrystallization of adult birdsong by perturbation of auditory feedback.   总被引:9,自引:0,他引:9  
A Leonardo  M Konishi 《Nature》1999,399(6735):466-470
Young birds learn to sing by using auditory feedback to compare their own vocalizations to a memorized or innate song pattern; if they are deafened as juveniles, they will not develop normal songs. The completion of song development is called crystallization. After this stage, song shows little variation in its temporal or spectral properties. However, the mechanisms underlying this stability are largely unknown. Here we present evidence that auditory feedback is actively used in adulthood to maintain the stability of song structure. We found that perturbing auditory feedback during singing in adult zebra finches caused their song to deteriorate slowly. This 'decrystallization' consisted of a marked loss of the spectral and temporal stereotypy seen in crystallized song, including stuttering, creation, deletion and distortion of song syllables. After normal feedback was restored, these deviations gradually disappeared and the original song was recovered. Thus, adult birds that do not learn new songs nevertheless retain a significant amount of plasticity in the brain.  相似文献   

12.
Female visual displays affect the development of male song in the cowbird   总被引:6,自引:0,他引:6  
M J West  A P King 《Nature》1988,334(6179):244-246
The role of social stimulation in avian vocal learning is well documented. The separate contribution of social, as opposed to vocal, stimulation has been difficult to address, however, because in almost all cases both tutor and pupil sing. The opportunity to isolate such effects arose in cowbirds (Molothrus ater ater) after discovering that males housed with non-singing female cowbirds made vocal changes which related directly to the female preferences for native song. Here we report how females communicate with males about songs. We describe a visual display by females, a wing stroke, that is elicited by specific vocalizations. The songs that trigger wing strokes are in turn highly effective releasers of copulatory postures, and thus this previously unnoticed female display has biological significance. The data not only provide the first evidence of the tutorial role of male-female interactions during song ontogeny, they also clearly implicate visual stimulation in song learning, a process that has until now been assumed to be affected only by auditory information.  相似文献   

13.
对鸣禽燕雀前脑、中脑和延髓的四个发声控制核团进行了测量。结果发现:前脑HV_c,RA核团的体积存在着明显的性别差异,雄鸟核团均大于雌鸟。中脑IC_o核与延髓的IM核无明显性双态性。这表明,造成燕雀鸣啭能力的性别差异主要是由前脑高位中枢的性双态所决定的。  相似文献   

14.
Koralek AC  Jin X  Long JD  Costa RM  Carmena JM 《Nature》2012,483(7389):331-335
The ability to learn new skills and perfect them with practice applies not only to physical skills but also to abstract skills, like motor planning or neuroprosthetic actions. Although plasticity in corticostriatal circuits has been implicated in learning physical skills, it remains unclear if similar circuits or processes are required for abstract skill learning. Here we use a novel behavioural task in rodents to investigate the role of corticostriatal plasticity in abstract skill learning. Rodents learned to control the pitch of an auditory cursor to reach one of two targets by modulating activity in primary motor cortex irrespective of physical movement. Degradation of the relation between action and outcome, as well as sensory-specific devaluation and omission tests, demonstrate that these learned neuroprosthetic actions are intentional and goal-directed, rather than habitual. Striatal neurons change their activity with learning, with more neurons modulating their activity in relation to target-reaching as learning progresses. Concomitantly, strong relations between the activity of neurons in motor cortex and the striatum emerge. Specific deletion of striatal NMDA receptors impairs the development of this corticostriatal plasticity, and disrupts the ability to learn neuroprosthetic skills. These results suggest that corticostriatal plasticity is necessary for abstract skill learning, and that neuroprosthetic movements capitalize on the neural circuitry involved in natural motor learning.  相似文献   

15.
Tashiro A  Sandler VM  Toni N  Zhao C  Gage FH 《Nature》2006,442(7105):929-933
New neurons are continuously integrated into existing neural circuits in adult dentate gyrus of the mammalian brain. Accumulating evidence indicates that these new neurons are involved in learning and memory. A substantial fraction of newly born neurons die before they mature and the survival of new neurons is regulated in an experience-dependent manner, raising the possibility that the selective survival or death of new neurons has a direct role in a process of learning and memory--such as information storage--through the information-specific construction of new circuits. However, a critical assumption of this hypothesis is that the survival or death decision of new neurons is information-specific. Because neurons receive their information primarily through their input synaptic activity, we investigated whether the survival of new neurons is regulated by input activity in a cell-specific manner. Here we developed a retrovirus-mediated, single-cell gene knockout technique in mice and showed that the survival of new neurons is competitively regulated by their own NMDA-type glutamate receptor during a short, critical period soon after neuronal birth. This finding indicates that the survival of new neurons and the resulting formation of new circuits are regulated in an input-dependent, cell-specific manner. Therefore, the circuits formed by new neurons may represent information associated with input activity within a short time window in the critical period. This information-specific addition of new circuits through selective survival or death of new neurons may be a unique attribute of new neurons that enables them to play a critical role in learning and memory.  相似文献   

16.
The role of sex steroids in the acquisition and production of birdsong   总被引:2,自引:0,他引:2  
P Marler  S Peters  G F Ball  A M Dufty  J C Wingfield 《Nature》1988,336(6201):770-772
Male birdsong is generally regarded as a secondary sexual characteristic under the control of gonadal steroids. Song typically waxes and wanes with the seasonal cycle of testicular growth and regression and decreases after adult castration. Testosterone therapy reinstates song, induces it in females, augments it in intact males, and spring testosterone profiles correlate with seasonal song production. Thus, testosterone has been viewed as a major factor in song acquisition and production acting either directly, or after aromatization within the brain. We show here, however, that song learning and early phases of the development of singing both take place in castrated male birds with no significant levels of testosterone in their blood plasma. Testosterone seems to be required for song crystallization, however. Oestradiol was unexpectedly still present after castration, evidently from a non-testicular source, throughout the period of male song acquisition.  相似文献   

17.
禽的鸣啭表现出一种复杂的学习过程,鸣禽学习鸣啭的过程可以分为两个阶段.在感觉学习期,幼鸟必须听到成鸟的鸣啭,并形成鸣啭模板记忆;在感觉运动学习期,鸣禽通过听觉反馈与模板匹配逐步建立稳定的鸣啭.对近年来鸣禽鸣啭学习过程的研究进展进行综述.  相似文献   

18.
Sleep affects learning and development in humans and other animals, but the role of sleep in developmental learning has never been examined. Here we show the effects of night-sleep on song development in the zebra finch by recording and analysing the entire song ontogeny. During periods of rapid learning we observed a pronounced deterioration in song structure after night-sleep. The song regained structure after intense morning singing. Daily improvement in similarity to the tutored song occurred during the late phase of this morning recovery; little further improvement occurred thereafter. Furthermore, birds that showed stronger post-sleep deterioration during development achieved a better final imitation. The effect diminished with age. Our experiments showed that these oscillations were not a result of sleep inertia or lack of practice, indicating the possible involvement of an active process, perhaps neural song-replay during sleep. We suggest that these oscillations correspond to competing demands of plasticity and consolidation during learning, creating repeated opportunities to reshape previously learned motor skills.  相似文献   

19.
多巴胺是脑内关键的神经递质,它通过与多巴胺受体的作用及其下游的一系列反应来影响基因表达、神经调节和行为活动.在成年鸣禽中,中脑多巴胺能神经元投射到X区、HVC和RA等鸣唱相关核团,释放多巴胺的量受一定社会情境的影响,从而表现出directed song和undirected song等不同鸣唱行为.获得斑胸草雀脑中多巴胺受体的表达情况,为与社会情境有关的鸣唱行为及其他和多巴胺相关的行为活动的神经机制探究提供了基础,并可促进行为学、电生理等方面的研究.我们发现D1受体在斑胸草雀脑中的分布与其mRNA的分布基本一致:在脑的绝大部分区域都有分布;主要鸣唱核团HVC和RA有表达,与其周围区域差异不明显;LMAN中表达量较少;DLM中的表达量较高,并与其周围区域差异明显.但是纹状体内的表达与其周围区域的差异性没有mRNA明显;GCT中的表达量较多,与周围区域差异明显.  相似文献   

20.
传承民歌、弘扬民歌、发展民歌是振兴中国民族音乐的重要内容,在高师声乐小组课中通过感受民歌、探究民歌,表现民歌三方面教学,提出以民歌教学为主要内容的高师声乐小组课模式的可行性及现实意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号