首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
高级发声中枢(HVC)和古纹状体粗核(RA)是位于鸣禽前脑的两个主要鸣啭控制核团,以中国北方地区常见的两种鸣禽栗鹂(Emberiza rutila)和燕雀(Fingilla montifringilla)为材料,应用免疫组化方法,对两种鸣禽HVC和RA内胆碱能神经元的胞体大小和密度进行了观察、发现ChAT样免疫反应具有性别差异。这一结果提示胆碱能神经元可能在鸣啭的产生和学习过程中发挥着重要的作用。  相似文献   

2.
斑胸草雀是一种研究鸣禽发声学习的模式动物,其鸣唱核团体积具有明显的性别差异,主要与体内雄激素水平的差异有关.以成年雌性斑胸草雀为研究对象,通过埋植睾酮,人为提高雌鸟体内雄激素水平,利用冰冻切片技术,结合尼氏染色法观察埋植前后HVC(high vocal center)、RA(robust nucleus of the arcopallium)核团体积的变化.实验分为雌鸟埋植组、正常雌鸟组与正常雄鸟组.实验结果表明:正常雄鸟的RA、HVC核团体积均显著大于正常雌鸟;雌鸟埋植睾酮后,RA核团体积显著增加,神经元数目未发生明显改变,HVC核团体积显著增加,神经元数目显著增加.综上,埋植睾酮后能使HVC、RA核团体积趋于雄性化.  相似文献   

3.
鸣禽多巴胺(DA)神经元主要分布于中脑腹侧被盖区-黑质体致密部(VTA-SNc复合体)和中脑导水管周围灰质(PAG),并分别发出纤维投射至鸣唱控制核团前脑纹状X区、弓状皮质栎核(RA)和高级发声中枢(HVC).近年研究表明,中脑向鸣唱控制核团中释放的DA可以调控鸣唱控制核团中神经元的活动,进而调节鸣禽的鸣唱行为.该文对近年来,多巴胺对鸣禽发声相关神经元活动的调控研究做一综述.  相似文献   

4.
实验利用组织学方法及微机处理技术测量了秋季成年雌雄鸣禽栗鹀(Emberiza ru-tile)的发声相关核团HVC、RA、X区、nXⅡts以及与发声无关核团SpM体积。结果表明,前脑的发声相关核团HV_c、RA及X区具有明显的雌雄差异,而延髓的mxⅡts以及发声无关核团SpM则雌雄差异不明显。  相似文献   

5.
栗鹀属于鸣禽类的一种,是东北常见的鸟类之一。本文对鸣禽栗鹀前脑发声核制核团HVc与RA进行了测量,并加以比较。结果表明,前脑HVc与RA核团体积存在着明显的性别差异。雄鸟的核团体积均大于雌鸟(P<0.05)。这表明造成栗鹀鸣啭能力的性别差异是由其神经结构的形态不同造成的。  相似文献   

6.
对成年雄性斑胸草雀去势和埋置睾酮,改变体内雄激素水平.用免疫组织化学方法检测雄激素对鸣唱系统NR2B蛋白表达的影响,探究雄激素在调节成年鸣禽鸣唱中的作用及可能的机制.实验结果表明:去势后,血浆雄激素水平显著降低,HVC、RA、LMAN核团中NR2B表达显著增加.相反,去势后埋置睾酮使体内雄激素水平比正常值显著增加,LMAN核团NR2B表达显著降低,在HVC和RA中也呈现下降趋势.实验结果提示:雄激素可以调节成年鸣禽鸣唱系统部分核团NR2B表达,可能引起成年鸣禽鸣唱和神经可塑性变化.  相似文献   

7.
为确定雄性鸣禽前脑发声控制核团体积的侧别差异,进而为一侧优势提供形态学依据,以东北常见鸣禽栗鹀(Emberiza rutila)成体为实验材料,采用冰冻连续冠状切片、焦油紫染色、图像分析等方法比较了雄性栗鹀左右侧发声控制核团的体积差异.结果表明:雄性栗鹀前脑发声控制核团的体积有明显的侧别差异,即左侧高级发声中枢(high vocal center,HVC)、古纹状体粗核(nucleus robust archistriatum,RA)、嗅叶X区(Xarea)的体积均比右侧的体积大,分别是右侧同名核团体积的1.14,1.30和1.1倍;而与鸣唱运动无关的核团,如位于延髓的螺旋内核(nucleus spitiformis medialis,SpM)则无明显的侧别差异.说明鸣禽鸣唱运动的高级控制中枢在形态学上存在明显的侧别差异.  相似文献   

8.
两种鸣禽鸣啭控制核团体积的季节性变化   总被引:8,自引:2,他引:6  
用Nissl染色和HE染色,通过定量分析研究了鸣禽粟巫和燕雀鸣啭控制核团体积的季节性变化,同时对睾丸体积的季节性变化进行了观察,结果表明,鸣禽前脑三个主要鸣啭相关核团上纹状体腹侧尾核,古纹状体粗核,旁嗅叶的X区的体积存在显著的季节性差异。睾丸的体积和重量亦呈显著的季节性变化,这些结果揭示,鸣禽鸣啭能力的季节性变化是受鸣啭控制核团体积和睾酮水平季节性变化的影响。  相似文献   

9.
鸣禽雄、雌鸟的鸣转能力有明显差异。其原因是控制发声的大脑神经中枢HVC和RA在雄、雌之间有明显差异。雄性鸟的HVC和RA的体积及中枢内神经细胞体都比雌鸟大,其核内的神经细胞数量也比雌鸟多。这种差异又与性激素水平有关。雄激素可增加控制发声核内神经细胞蛋白质合成速度促进神经细胞发育。在鸣禽鸟高位发声中枢中有左侧优势现象即左侧HVC和RA都大于右侧HVC和RA。  相似文献   

10.
X区内棘神经元(spiny neurons,SN)接受HVC和LMAN谷氨酸能投射,并发出GABA能抑制性信息至无棘快发放神经元(the aspiny,fast-firing neurons,AF),SN与AF这两类神经元形成了X区内部的突触联系.最终由AF神经元发出信息传递至丘脑DLM.采用膜片钳电生理技术,将成年雄性斑胸草雀分为对照组和去势组,记录分析X区神经元电生理特性.结果表明,去势提高SN神经元兴奋性,降低AF神经元兴奋性.  相似文献   

11.
Hahnloser RH  Kozhevnikov AA  Fee MS 《Nature》2002,419(6902):65-70
Sequences of motor activity are encoded in many vertebrate brains by complex spatio-temporal patterns of neural activity; however, the neural circuit mechanisms underlying the generation of these pre-motor patterns are poorly understood. In songbirds, one prominent site of pre-motor activity is the forebrain robust nucleus of the archistriatum (RA), which generates stereotyped sequences of spike bursts during song and recapitulates these sequences during sleep. We show that the stereotyped sequences in RA are driven from nucleus HVC (high vocal centre), the principal pre-motor input to RA. Recordings of identified HVC neurons in sleeping and singing birds show that individual HVC neurons projecting onto RA neurons produce bursts sparsely, at a single, precise time during the RA sequence. These HVC neurons burst sequentially with respect to one another. We suggest that at each time in the RA sequence, the ensemble of active RA neurons is driven by a subpopulation of RA-projecting HVC neurons that is active only at that time. As a population, these HVC neurons may form an explicit representation of time in the sequence. Such a sparse representation, a temporal analogue of the 'grandmother cell' concept for object recognition, eliminates the problem of temporal interference during sequence generation and learning attributed to more distributed representations.  相似文献   

12.
鸣唱控制系统的高级发声中枢HVC(high vocal center)是发声运动通路和前端脑通路的始端,是发声行为的起始控制脑区,亦可接受听觉信号的输入及反馈,是鸣禽鸣唱调控最为重要的脑区.以往研究表明,雄激素及其代谢产物对鸣禽鸣唱控制有重要作用.去势显著改变鸣禽体内激素含量,进而影响鸣禽鸣曲稳定性,但其具体机制尚未阐明.我们运用全细胞膜片钳记录法,在离体细胞水平研究了去势引起的雄激素水平降低对HVC不同神经元电生理特性的影响.研究结果显示,去势组与对照组相比,投射神经元HVCRA,HVCX膜输入电阻减小,膜时间常数降低,动作电位后超极化幅值升高及达到峰值时间延长,表明雄激素可以提高两类投射神经元的兴奋性. 综上所述,雄激素可以一定程度上提高HVC神经元的兴奋性,雄激素可增强HVC对发声运动通路(vocal motor pathway,VMP)的控制,抑制前端脑通路(anterior forebrain pathway,AFP)来实现维持鸣曲的稳定.  相似文献   

13.
多巴胺是脑内关键的神经递质,它通过与多巴胺受体的作用及其下游的一系列反应来影响基因表达、神经调节和行为活动.在成年鸣禽中,中脑多巴胺能神经元投射到X区、HVC和RA等鸣唱相关核团,释放多巴胺的量受一定社会情境的影响,从而表现出directed song和undirected song等不同鸣唱行为.获得斑胸草雀脑中多巴胺受体的表达情况,为与社会情境有关的鸣唱行为及其他和多巴胺相关的行为活动的神经机制探究提供了基础,并可促进行为学、电生理等方面的研究.我们发现D1受体在斑胸草雀脑中的分布与其mRNA的分布基本一致:在脑的绝大部分区域都有分布;主要鸣唱核团HVC和RA有表达,与其周围区域差异不明显;LMAN中表达量较少;DLM中的表达量较高,并与其周围区域差异明显.但是纹状体内的表达与其周围区域的差异性没有mRNA明显;GCT中的表达量较多,与周围区域差异明显.  相似文献   

14.
15.
电刺激鸣禽高级发声中枢诱发叫声的声谱分析   总被引:2,自引:0,他引:2  
栗Wu每侧高级发声中枢(HVC)均有发出简单音节的能力,并决定正常鸣转的音节时间和能量特征,电刺激两侧HVC均可以诱发简单的叫声,与正常的鸣转音节相比,声学特征上表现为音节时程长,频率幅度变化小,能量不集中且极少有复杂音节和陪音的出现,刺激左侧HVC所诱发的叫声,其基本音的频带起止均明显高于右侧诱发叫声,暗示左侧HVC控制频率较高,较复杂的音节,也为左侧优势理论提供了声学上的证据。  相似文献   

16.
Long MA  Jin DZ  Fee MS 《Nature》2010,468(7322):394-399
In songbirds, the remarkable temporal precision of song is generated by a sparse sequence of bursts in the premotor nucleus HVC. To distinguish between two possible classes of models of neural sequence generation, we carried out intracellular recordings of HVC neurons in singing zebra finches (Taeniopygia guttata). We found that the subthreshold membrane potential is characterized by a large, rapid depolarization 5-10 ms before burst onset, consistent with a synaptically connected chain of neurons in HVC. We found no evidence for the slow membrane potential modulation predicted by models in which burst timing is controlled by subthreshold dynamics. Furthermore, bursts ride on an underlying depolarization of ~10-ms duration, probably the result of a regenerative calcium spike within HVC neurons that could facilitate the propagation of activity through a chain network with high temporal precision. Our results provide insight into the fundamental mechanisms by which neural circuits can generate complex sequential behaviours.  相似文献   

17.
BK 通道,即钙离子激活的大电导钾离子通道,它通过产生快速的后超极化(fA HP)来控制动作电位的持续时间、发放频率。为研究BK通道在鸣禽鸣唱学习中的作用提供形态学依据,用免疫组化法观察了BK通道在成年雄性斑胸草雀脑中的分布。证实了其在端脑、基底节纹状体、中脑、小脑等脑区都有广泛的表达,其中 RA、HVC、LM AN、X区、DM 等与鸣唱系统相关的核团都有显著的表达。这暗示了BK通道可能与鸣禽鸣唱信息整合、听觉反馈、鸣曲可塑性和稳定性以及呼吸调节都有密不可分的联系。  相似文献   

18.
虎皮鹦鹉发声控制神经核团与鸣叫行为的性双态性研究   总被引:1,自引:0,他引:1  
本文应用石蜡切片的方法,对成年虎皮鹦鹉的前脑发声控制神经核团:上纹状体腹侧尾核(Hyperstriatum ventrale pars Canssle,HVC)。古纹状体粗核(Nucleus robustus archistriaylis,RA)和嗅叶X区(Area X)进行了观察和比较;并采用计算机鸣声分析技术对虎皮鹦鹉的鸣声进行了分析。结果发现:雄鸟的三个发声控制神经核团体积明显大于雌鸟的三个发声控制神经核团体积。雄鸟的叫声明显比雌鸟的叫声复杂多变。这些结果提示虎皮鹦鹉的发声控制神经核团与鸣叫行为都存在着性双态性。  相似文献   

19.
K W Nordeen  E J Nordeen 《Nature》1988,334(6178):149-151
Many birds learn song during a restricted 'sensitive' period. Juveniles memorize a song model, and then learn the pattern of muscle contractions necessary to reproduce the song. Of the neural changes accompanying avian song learning, perhaps the most remarkable is the production of new neurons which are inserted into the hyperstriatum ventralis pars caudalis (HVc), a region critical for song production. We report here that in young male zebra finches many of the new neurons incorporated into the HVc innervate the robust nucleus of the archistriatum (RA) which projects to motor neurons controlling the vocal musculature. Furthermore, far fewer of these new neurons are incorporated into the HVc of either adult males that are beyond the sensitive learning period, or young females (who do not develop song). Thus, a major portion of the vocal motor pathway is actually created during song learning. This may enable early sensory experience and vocal practice to not only modify existing neuronal circuits, but also shape the insertion and initial synaptic contacts of neurons controlling adult song.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号