首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在0.36 BiScO3-0.64 PbTiO_3(BSPT64)系压电陶瓷中,掺入适量稀土元素氧化物(Tm_2O_3、Sm_2O_3),采用固相烧结工艺制备出性能得到改善的高居里温度压电陶瓷.XRD图谱表明少量稀土掺杂不影响材料晶体结构,SEM图样表明稀土掺杂对晶粒尺寸有影响,Tm2O3和Sm2O3可促进晶粒生长,提高材料致密度.适量的稀土氧化物掺杂可调节陶瓷性能,当掺入Sm2O3的质量分数达到0.100%时,材料的相对介电常数εT33/ε0=2 199;当掺入Tm2O3的质量分数达到0.075%时,压电应变常数d33=480 p C/N.  相似文献   

2.
设计并研究了一种新型五元系压电陶瓷材料Pb(Mg1/3Nb2/3)a(Mn1/3Nb2/3)b(Mn1/3Sb2/3)cZrdTieO3(PMMSN).以材料的准同型相界附近的组成为研究对象,采用普通合成法、不同合成路径的先驱体法进行材料合成,通过添加低温烧结促进剂实现低温烧结,并研究其对材料性能的影响.结果表明,三组元复合先驱体法合成材料的性能最佳,1100℃烧结样品的性能参数为Qm=1916,kp=0.56,d33=326pC/N,ε33T/ε0=1349,tanδ=0.0043.添加Si O2,CdO可使材料烧结温度降低到850℃~950℃,且基本保持了材料的特性,在低温共烧叠层功率型压电陶瓷器件方面显示出好的应用前景.  相似文献   

3.
通过冷烧结工艺,实现了NaCl、Li_2MoO_4、AlN-NaCl和Zn_2SiO_4-NaCl陶瓷材料的烧结过程,研究了冷烧结材料的微波介电性能。研究结果表明:冷烧结制备Li_2MoO_4材料的微波介电性能为εr=5.6,Q×f=24866 GHz,τf=-160×10~(-6)/℃,其εr值与传统烧结的样品相似,Q×f值也比较好。在冷烧结过程中,AlN-NaCl、Zn_2SiO_4-NaCl材料没有第二相的生成,AlN-NaCl和Zn_2SiO_4-NaCl材料的相对密度分别随着AlN和Zn_2SiO_4质量分数的增加而降低。在微波频率下,εr符合考虑气孔的Lichtenecker方程模型,Q×f值随着AlN和Zn_2SiO_4质量分数的增加而降低,τf值随着AlN和Zn_2SiO_4质量分数的变化规律符合混合法则。  相似文献   

4.
稀土在硬质合金球形粉末烧结体表面的富集现象   总被引:3,自引:0,他引:3  
采用合金粉末烧结体表面观察法研究了稀土在WC-Co硬质合金中的作用机理.合金中的稀土分别以混合稀土(以La和Ce为主体成分)- Co预合金粉形式和La(NO3)3的丙酮溶液形式在湿磨时直接加入.用扫描电镜和能谱仪对平均粒径小于200 μm的2种球形稀土硬质合金粉末烧结体表面进行了观察与分析.研究结果表明:当以混合稀土-Co预合金粉形式加入稀土时,在烧结过程中,合金中的稀土La和Ce在合金粉末烧结体表面产生明显的富集,并与主要来自于烧结炉内气氛中的杂质元素形成了含La,Ce,S,Ca,W,C和O的复杂化合物;当以La(NO3)3形式加入稀土时,在合金粉末烧结体表面不存在La的富集或聚集.稀土的添加形式同时也影响合金粉末烧结体表面硬质相WC与粘结相的比例,当以混合稀土-Co预合金粉末形式加入稀土时,合金粉末烧结体表面粘结相含量较少.因此,稀土的添加形式影响其在硬质合金中的作用机理,当以混合稀土-Co预合金粉形式加入稀土时,合金中的稀土不但具有较强的富集杂质元素的作用,而且还可以阻止合金粉末烧结体表面富粘结相结构的形成.  相似文献   

5.
研究了烧结温度对掺质量分数为0.5%的TiO2的Ba4.2(Sm0.8Nd0.17Bi0.03)9.2Ti18O54(简称BSNBT)陶瓷材料微观结构及其微波介电性能的影响.采用XRD,场发射扫描电子显微镜(FE-SEM)和EPMA分析了陶瓷材料的微观结构.结果表明,当烧结温度高于1 340℃时陶瓷样品中出现第二相BaTi4O9.随着烧结温度的升高,材料的介电常数rε和Qf值(品质因数和谐振频率的乘积)先增大后减小,谐振频率温度系数逐渐增大.当烧结温度为1 340℃时,rε和Qf值均达到最大,rε=80.5,Qf=9 009 GHz(在3.5 GHz下),此时谐振频率温度系数fτ=6.5×10-6/℃.  相似文献   

6.
研究了烧结温度对掺质量分数为0.5 % 的TiO2的Ba4.2(Sm0.8Nd0.17Bi0.03)9.2Ti18O54(简称BSNBT)陶瓷材料微观结构及其微波介电性能的影响.采用XRD,场发射扫描电子显微镜(FE-SEM)和EPMA分析了陶瓷材料的微观结构.结果表明,当烧结温度高于1 340 ℃时陶瓷样品中出现第二相BaTi4O9.随着烧结温度的升高,材料的介电常数εr和Qf值(品质因数和谐振频率的乘积)先增大后减小,谐振频率温度系数逐渐增大.当烧结温度为1 340 ℃时,εr和Qf值均达到最大,εr=80.5,Qf=9 009 GHz(在3.5 GHz下),此时谐振频率温度系数τf=6.5×10-6/℃.  相似文献   

7.
研究了在不同的预合成和烧结条件下,Li1/2Ln1/2TiO3(Ln=Sm,Nd)的微波介电性能.当Ln=Sm,预烧温度为1000℃,烧结温度在1200~12500℃,样品的微波介电性能好.典型值为εr=52,Qf=2280GHz;当Ln=Nd,烧结温度在1200~12500ε,预烧温度为1000ε或950℃的样品εr、Qf值较高,典型值为εr=80,Qf=2100GHz.  相似文献   

8.
采用快速液相烧结工艺制备了多铁陶瓷材料Bi1-xGdxFeO3(x=0.00,0.05,0.10,0.15)和Bi1-xNdxFeO3(x=0.00,0.05,0.10),研究了稀土离子Gd/Nd掺杂对多铁材料BiFeO3相结构和铁电性能的影响.X射线衍射谱显示对于Gd/Nd掺杂Bi1-xRxFeO3体系,适量掺杂有助...  相似文献   

9.
采用传统陶瓷工艺制备了PNW-PMS-PZT四元系压电陶瓷,分析了其粉体的相结构组成,研究了室温下烧结温度和组分对表观密度ρ、相对介电常数εr、介电损耗tan δ,居里温度Tc和压电常数d33的影响,实验表明在室温下随着PZT含量的增加εr、Tc、d33逐渐增大,tan δ逐渐减小:随着烧结温度的提高,ρ总体增大,εr、d33增大,tan δ逐渐减少,Tc变化不明显。制得了εr=2200,tan δ=0.0062,d33=390pC/N,Tc=235℃的压电材料。  相似文献   

10.
以硼硅玻璃和Al2O3陶瓷粉料为原料,通过改变玻璃和Al2O3质量比(60∶40~40∶60),采用低温烧结法制备低温共烧多层陶瓷基板(LTCC)材料。采用热膨胀仪、电子万能试验机、导热仪、X线衍射仪(XRD)、扫描电子显微镜(SEM)和阻抗分析仪表征样品的性能。结果表明:样品在烧成温度超过650℃以后,开始出现快速的收缩。随着Al2O3含量增加,样品的密度先增加后减小,烧结收缩率减小。随着样品密度下降,样品的热导率(λ)、抗弯强度(σ)和介电常数(εr)降低,介电损耗(tanδ)恶化。当Al2O3质量分数为45%时,复相材料于875℃烧结致密,显示出较好的性能,λ=2.89 W/(m.K),σ=203.1 MPa,εr=7.66,tanδ=9.1×10-4(于10 MHz下测试)。  相似文献   

11.
通过传统固相法合成了四元系压电陶瓷材料Pb0.95Sr0.05(Zr1-xTix)O3-Pb(Mn1/3Sb2/3)O3-Pb(Zn1/3Nb2/3)O3(简称PZT-PMS-PZN),用XRD技术分析了陶瓷的相结构,研究了不同Zr/Ti比对该材料的机械品质因数Qm、机电耦合系数KP、压电常数d33、介电常数rε以及介电损耗tanδ的影响.结果表明,当0.46≤x≤0.50时,材料四方与菱方两相共存,即为材料的准同型相界.当x=0.48且烧结温度为1150℃时,陶瓷具有优良的综合电学性能.其主要性能参数为:εr=1 761,tanδ=0.002 8,Qm=1300,d33=351pC/N,Kp=0.58.该材料可作为大功率压电陶瓷变压器的候选材料.  相似文献   

12.
以氧氯化锆、钛酸四丁酯、硝酸铅为前驱物,采用两步水热法合成钙钛矿结构的Pb Zr0.52Ti0.48O3粉体并制备陶瓷样品.通过XRD、SEM及电学性能等测试,系统研究了矿化剂浓度对PZT粉体结晶性、形貌以及最终烧结陶瓷样品电学性能的影响,初步探讨了PZT粉体在不同碱度下的生长机理.实验结果表明,较低碱度条件有助于制备结晶性良好、单一分散的立方体形貌的PZT粉体,由该粉体烧结的陶瓷样品的电学性能(d33=310 p C/N,kp=53.2%,ε33T/ε0=1 358,tanδ=0.005)明显优于高碱度水热条件制备粉体所烧结的陶瓷及传统固相法制备的陶瓷的压电性能(d33=223 p C/N,kp=40%,ε33T/ε0=1 330,tanδ=0.004).  相似文献   

13.
研究了(Bi1/2Na1/2)TiO3-BaTiO3压电陶瓷在准同型相界附近锰离子掺杂对材料微观结构、压电和介电性能的影响.采用XRD和SEM等方法对材料的相结构和晶粒生长情况进行了研究.结果表明:掺锰有促进烧结的作用并能使晶格发生畸变,使相结构中的四方相向三方相转变;当掺杂量质量分数为0.3%时,可以获得较好的综合性能,压电常数d33=124 pC/N,径向机电耦合系数kp=31%,介电常数3Tε3/0ε=615,介电损耗tanδ=0.014,机械品质因数Qm=267,频率常数Np=3 050 Hz.m.  相似文献   

14.
采用传统固相法合成了0.9{Pb[Zr0.23Ti0.36+0.02(Mg1/2W1/2)+0.39(Ni1/3Nb2/3)]O3}(简称PZT基压电陶瓷)/0.1{Ni0.8Co0.1Cu0.1Fe2O4}(简称NCCF)磁电复合陶瓷材料,研究了该材料在不同烧结温度下的相结构、介电和压电性能.结果表明,该复合材料经不同温度烧结后,仍保持PZT基压电陶瓷和NiCoCu铁氧体的各自相结构,没有新相生成.在1 200℃下烧结时,材料具有较好的综合电性能:d33=317 pC/N,εr=2 593,tanδ=0.017.表明该磁电复合材料可能在高密度信息存储器方面表现出较大的潜在应用.  相似文献   

15.
研究了B2O3对陶瓷的烧结性能及微波介电特性的影响.结果表明B2O3的掺人能使Ca[(Li1/3Nb2/3)0.95Zr0.15]3 δ(CLNZ)陶瓷体系的烧结温度降低160~210℃,谐振频率温度系数τf随B2O3掺入量增加,但烧结温度对其没有明显影响.在990℃.掺入质量分数为1.0 %的B2O3,陶瓷微波介电性能最佳:εr=33.1,Qf=13 700 GHz,τf=-6.8×10-6/℃;而且,掺入2.0%的B2O3,在940℃烧结4 h,能获得介电性能良好的陶瓷,其εr=31.4,Qf=8 700 GHz,τf=-5.2×10-6/℃.  相似文献   

16.
采用固相合成法制备了三元系压电陶瓷Pb_(0.98)Sr_(0.02)(Mn_(1/3)Sb_(2/3)),(Zr_(0.5) Ti_(0.5)_(1-x)O_3(0相似文献   

17.
含稀土硬质合金的表面观察   总被引:4,自引:1,他引:3  
采用合金烧结表面观察法研究了掺杂稀土在低碳硬质合金中的存在形式与作用机理.掺杂稀土分别以混合稀土(La和Ce为主体成分) Co(RE Co)预合金粉形式和La(NO3)3的丙酮溶液形式在硬质合金湿磨时直接加入.用扫描电镜和能谱仪对含稀土与不含稀土的低碳硬质合金的烧结表面进行观察与分析.研究结果表明:合金中是否含有稀土以及稀土的掺杂形式对合金的表面结构有很大的影响;以混合稀土 Co预合金粉形式掺杂的硬质合金烧结表面,稀土Ce明显富集,合金表面的稀土形成了含氧的稀土第3相;当稀土以La(NO3)3形式掺杂时,合金表面含氧的稀土La第3相的数量明显小于前一种掺杂形式.当稀土以RE Co预合金粉的形式掺杂时,因Ce与氧具有很强的结合能力,Ce向硬质合金烧结表面富集的驱动力主要来自于合金内部与合金表面氧的浓度差;当稀土以La(NO3)3的形式掺杂时,硬质合金烧结表面附近的稀土La向烧结表面聚集的驱动力主要来自于系统自由能的降低.  相似文献   

18.
本文研究了廉价高性能富Nd混合稀土MR-Fe-B永磁合金的成分及其工艺因素对磁性能的影响。确定了这种铁基稀土永磁合金的最佳成分及最佳工艺制度。该永磁合金磁性能达到:B_r=1.15—1.28T(11.5—12.8 kGs),i~Hc=573—796kA/m(7.2-10.0kOe);(BH)_(max)=247—270kJ/m~3(31—34MGOe),在20—100℃范围内开路磁通可逆温度系数为-0.098%/℃,居里温度T_c=310℃,维氏硬度HV≥520。对其高矫顽力的机制进行了探讨,认为烧结态磁体的矫顽力主要来源于富 MR相的作用,而后烧态磁体的矫顽力的提高主要是反磁化校数目减少的缘故。  相似文献   

19.
研究了Bi2O3.3TiO2和PbTiO3的加入量对SrTiO3基高压陶瓷电容器材料性能的影响.实验的结果表明:最佳加入量的摩尔分数分别是Bi2O3.3TiO2为9%,PbTiO3为18%.在1 250 ℃的温度下烧结获得了性能为:εr=3 295;Eb=10.2 kV/mm;tgδ=6×10-4;ΔC/C(-25~+85 ℃)≤±12%;绝缘电阻R=7.5×1012 Ω的高压陶瓷电容器材料.  相似文献   

20.
采用固相合成法制备CuO掺杂的0.2(Na0.5La0.5)TiO3 0.8CeO2复合微波介质陶瓷材料.研究了CuO对该复合体系的烧结性能、微观结构和微波介电性能的影响.研究表明,CuO有效地降低了该复合体系的烧结温度,改善了体系的微观结构.随CuO含量的增加,体系的介电常数εr和Qf值均不断下降.当CuO的掺入量为0.25%(质量分数),在1 400℃烧结,保温2.5 h的条件下,在该复合体系中可得到εr=39.1,Qf=15130 GHz的最佳微波介电性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号