首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A process for fabricating graphene and TiO2 layer by layer composite was introduced to improve the photocatalytic activity by controlling the layers, thickness and the mass ratio between graphene and TiO2. The graphene oxide (GO) was synthesized from natural graphite powder by the modified Hummers method. Large-area uniform GO and TiO2 thin films were made by a spin-coating process in turn. After exposure of the TiO2/GO multilayer film to UV light irradiation which allows the reduction of GO to graphene, a novel photocatalytic structure as graphene and TiO2 layer by layer composite was synthesized. The cross-sectional SEM image showed that a clear layer by layer microstructure with a single layer thickness of graphene or TiO2 was in the range of about 50 nm. The total thickness of the film was around 5 μm which was varied according to the layer number of spin coating process. Raman spectra revealed that significant structural changes occurred through UV light irradiation. Photodegradation for methylene blue (MB) exhibited that the layer by layer composite is of higher photocatalytic activity than the pure TiO2 layer.  相似文献   

2.
 200 ℃下四方结构的二氧化钛(TiO2)与氧化石墨烯(GO)复合纳米晶在一个装有适量钛酸四丁酯、无水乙醇、氧化石墨烯和蒸馏水的密闭的水热釜中加热12 h后被制备。X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等一系列分析仪器被运用来揭示二氧化钛与氧化石墨烯复合纳米晶是由粒径大约160 nm的四方结构的二氧化钛纳米晶与氧化石墨烯复合而成,通过紫外吸收对其光学性能进行了必要的测试。
  相似文献   

3.
In order to obtain TiO2 with high photocatalytic activity, a cathode reduction was used to dope I7+ and I5+ into TiO2 nanotubes of anodized Ti in C2H2O4•2H2O + NH4F electrolyte. SEM images show that the anodization method integrated the preparation with the doping process, which for nonmetals-doping is advantageous to maintain the morphological integrity of TiO2 nanotubes. I7+-I5+-doping enhances the UV response of TiO2 and result in a red-shift. Under UV/visible irradiation, a I7+-I5+-doped sample (400°C) showed the highest Iph and photocatalytic efficiency. A part of I in the I7+-I5+-doped sample is involved in the UV response, the red-shift and the higher Iph.  相似文献   

4.
Climate change and the consumption of non-renewable resources are considered as the greatest problems facing humankind.Because of this,photocatalysis research has been rapidly expanding.TiO2 nanoparticles have been extensively investigated for photocatalytic applications including the decomposition of organic compounds and production of H2 as a fuel using solar energy. This article reviews the structure and electronic properties of TiO2,compares TiO2 with other common semiconductors used for photocatalytic applications and clarifies the advantages of using TiO2 nanoparticles.TiO2 is considered close to an ideal semi- conductor for photocatalysis but possesses certain limitations such as poor absorption of visible radiation and rapid recombination of photogenerated electron/hole pairs.In this review article,various methods used to enhance the photocatalytic characteristics of TiO2 including dye sensitization,doping,coupling and capping are discussed.Environmental and energy applications of TiO2, including photocatalytic treatment of wastewater,pesticide degradation and water splitting to produce hydrogen have been summarized.  相似文献   

5.
[目的]提高介孔TiO2材料的光催化活性。[方法]采用蒸发诱导自组装法(EISA),以四氯化钛和钛酸丁酯为钛源,嵌段共聚物P123(EO20PO70EO20)为模板剂,制备介孔TiO2。用光化学修饰法将CdS掺进介孔TiO2中,合成对可见光有较好响应的复合材料,并利用X射线衍射(XRD)、透射电镜(TEM)、原子吸收分光光度法(AAS)和光催化等手段对样品进行表征。[结果]XRD和TEM结果表明成功合成有序的六方介孔材料;AAS确定复合材料中Cd的含量为0.96mg/g;光催化于500 W氙灯下以2×10-5mol/L次甲基蓝(MB)为模型污染物,结果显示CdS/TiO2复合材料的可见光催化活性明显提高。[结论]光化学修饰法制备的介孔CdS/TiO2复合材料可增强其可见光催化活性。  相似文献   

6.
Novel N-doped TiO2 (denoted as N-NTA600) was prepared by treating nanotube titanic acid (NTA) in NH3 flow. Its visible light photocatalytic activity,evaluated by decoloration reaction of methylene blue,is higher than that of N-P25(600) prepared by treatment of P25-TiO2 in the same condition. It is suggested that the origin of visible-light photocatalytic activity is single-electron-trapped oxygen vacancy (Vo·) modified by chemisorbed NO.  相似文献   

7.
Zn-doped titanium oxide (TiO2) nanotubes electrode was prepared on a titanium plate by direct anodic oxidation and immersing method in sequence. Field emission scanning electron microscopy (FESEM) showed that the Zn-doped TiO2 nanotubes were well aligned and organized into high density uniform arrays with diameter ranging from 50 to 90 nm. The length and the thickness were about 200 and 15 nm respectively. TiO2 anatase phase was identified by X-ray diffraction (XRD). X-ray photoelectronspectroscopy (XPS) indicated that Zn ions were mainly located on the surface of TiO2 nanotubes in form of ZnO clusters. Compared with TiO2 nanotubes electrode, about 20 nm red shift in the spectrum of UV-vis absorption was observed. The degradation of pentachlorophenol (PCP) in aqueous solution under the same condition (initial concentration of PCP: 20 mg/L; concentration of Na2SO4:0.01 mol/L and pH: 7.03) was carried out using Zn-doped TiO2 nanotubes electrode and TiO2 nanotubes electrode. The degradation rates of PCP using Zn-doped TiO2 nanotubes electrode were found to be twice and 5.8 times as high as that using TiO2 nanotubes electrode by UV radiation (400 μw/cm^2) and visible light radiation (4500 μw/cm^2), respectively. 73.5% of PCP was removed using Zn-doped TiO2 nanotubes electrode against 45.5% removed using TiO2 nanotubes electrode in 120 min under UV radiation. While under visible light radiation, the degradation efficiency of PCP was 18.4% using Zn-doped TiO2 nanotubes electrode against 3.2% using TiO2 nanotubes electrode in 120 min. The optimum concentration of Zn doping was found to be 0.909%. The PCP degradation efficiencies of the 10 repeated experiments by Zn-doped TiO2 nanotubes electrode were rather stable with the deviation within 3.0%.  相似文献   

8.
An orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore using (NH4)2SO4. The optimized reaction conditions are defined as an (NH4)2SO4/zinc molar ratio of 1.4:1, a roasting temperature of 440°C, and a thermostatic time of 60 min. The molar ratio of (NH4)2SO4/zinc is the most predominant factor and the roasting temperature is the second significant factor that governs the zinc extraction. Thermogravimetric–differential thermal analysis was used for (NH4)2SO4 and zinc mixed in a molar ratio of 1.4:1 at the heating rates of 5, 10, 15, and 20 K·min-1. Two strong endothermic peaks indicate that the complex chemical reactions occur at approximately 290°C and 400°C. XRD analysis was employed to examine the transformations of mineral phases during roasting process. Kinetic parameters, including reaction apparent activation energy, reaction order, and frequency factor, were calculated by the Doyle–Ozawa and Kissinger methods. Corresponding to the two endothermic peaks, the kinetic equations were obtained.  相似文献   

9.
To enhance the photocatalytic activity of TiO2 nanotubes,tetracycline hydrochloride(TC) molecularly imprinted titania modified TiO2 nanotubes(MIP-TiO2) was prepared by liquid phase deposition,which improved the molecular recognition ability of the photocatalyst toward template molecules.This MIP-TiO2 photocatalyst was characterized by ESEM and XRD,which showed that the imprinted titania was deposited on the nanotube uniformly and was of well-crystalized anatase-type.In the adsorption experiments,MIP-TiO2 exhibited a high adsorption capacity(about 1.6 times higher than that of TiO2 nanotubes) for TC mainly because of its imprinted sites and high surface area.Under UV irradiation MIP-TiO2 showed enhanced photocatalytic activity with an apparent first-order rate constant 1.9-fold that of TiO 2 nanotubes.  相似文献   

10.
Al-Ti-O inclusions always clog submerged nozzles in Ti-bearing Al-killed steel. A typical synthesized Al2TiO5 inclusion was immersed in a CaO-SiO2-Al2O3 molten slag for different durations at 1823 K. The Al2TiO5 dissolution paths and mechanism were revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Decreased amounts of Ti and Al and increased amounts of Si and Ca at the dissolution boundary prove that inclusion dissolution and slag penetration simultaneously occur. SiO2 diffuses or penetrates the inclusion more quickly than CaO, as indicated by the w(CaO)/w(SiO2) value in the reaction region. A liquid product (containing 0.7–1.2 w(CaO)/w(SiO2), 15wt%–20wt% Al2O3, and 5wt%–15wt% TiO2) forms on the inclusion surface when Al2TiO5 is dissolved in the slag. Al2TiO5 initially dissolves faster than the diffusion rate of the liquid product toward the bulk slag. With increasing reaction time, the boundary reaches its largest distance, the Al2TiO5 dissolution rate equals the liquid product diffusion rate, and the dissolution process remains stable until the inclusion is completely dissolved.  相似文献   

11.
以Ti(OC4H9)4为钛源,采用溶胶-凝胶法制备了复合氧化石墨(Graphite oxide,GO)二氧化钛粉体(GO/Ti O2),且利用X射线衍射分析(XRD)、比表面积测定(BET)及透射电镜(TEM)等仪器对其进行了初步表征.以罗丹明B(RhB)的光催化实验为探针反应,研究其光催化活性,发现与单纯Ti O2相比,复合纳米粉末的光催化活性有显著的提高.通过粉体的分子荧光光谱(PL)、紫外可见漫反射分析(UV-vis reflection)及电化学性能的测定,发现石墨的引入有助于减少电子的复合效率.同时,采用辣根过氧化物酶(POD)分光光度法、苯甲酸荧光光度法、超氧化物岐化酶(SOD)和KI分光光度法测定降解过程中的氧化物种,结果表明GO/Ti O2光催化机理涉及到超氧自由基的氧化机理,并未涉及催化剂的空穴氧化.  相似文献   

12.
以自制氧化石墨、钛酸丁酯为主要原料,用溶胶-凝胶法制备了TiO2/氧化石墨烯(TiO2/GO)复合材料,采用TEM、XRD对其进行表征。以活性艳红X-3B溶液为模拟废水,研究了该复合材料的光催化降解性能,考察了氧化石墨烯含量、染料初始浓度、催化剂用量等因素对其光催化降解率的影响。结果表明:氧化石墨烯片层上均匀负载着锐钛矿型的TiO2球形颗粒,粒径在10 nm左右;当TiO2/GO复合材料中加入的GO含量为100 mg时光催化活性最好,比相同条件下纯TiO2和TiO2与氧化石墨物理混合物的光催化活性有明显提高;相同条件下,降解率随溶液初始浓度的升高而降低,催化剂用量存在最佳值,100 mg/L的活性艳红X-3B溶液,催化剂用量的最佳值为0.8 g/L,反应60 min后其降解率可达96%。  相似文献   

13.
Metallic nanoparticles loaded graphene nanocomposites have been widely studied for various scientific and technological applications. In this study, a facile method was reported to realize a straightforward growth of shape and size-controllable of metallic nanoparticles, and the subsequent hybridization with graphene in solution by strategically coupling wet-chemical route and laser ablation. By mixing graphene oxide(GO) with a tunable concentration level of polyvinylpyrrolidone(PVP) in aqueous solution, Ag nanocubes with a face-centered cubic crystal structure were generated by pulsed laser ablation and then mounted on GO nanosheets with the assistance of PVP. The preferential adsorption of PVP to Ag(100) crystal face led to the production of Ag nanocubes with exposed(100) facet. The result showed that the morphological yield of spherical particles decreased with the increase in PVP concentration. X-ray diffraction(XRD) and UV–visible spectroscopy analyses confirmed that GO was partially reduced. In the reduction of CO_2 gas, the photocatalytic conversion rate could achieve 133.1 μmol g~(-1) h~(-1) in 6 hrs for cubic Ag-loaded reduced GO composites.  相似文献   

14.
A novel two-step method for the synthesis of monoclinic titanium oxide (i.e. TiO2(B)) nanosheets is presented in this report. The method is featured by two steps: 1) synthesis of hydrogen titanate nanosheets, followed by 2) calcination of the titanate nanosheets at elevated temperatures. The hydrogen titanate nanosheets were prepared first by autoclaving anatase TiO2 powders, obtained by air cal- cining an ethanol-gel of Ti(OH)4 at 500℃, in aqueous NaOH (10 mol/L) at 150-200℃, and then by washing with hydro- chloric acid under supersonic irradiation. While sizes of the nanosheets were found to increase with increasing the temperature of the hydrothermal treatment, the calcination at 400-500℃ of the hydrogen titanate nanosheets that were synthesized at higher autoclaving temperatures (180-200℃) produced monoclinic TiO2 nanosheets with a uniform morphology. By contrast, the same calcination of the titanate nanosheets synthesized at the autoclaving temperature 180℃ led to anatase TiO2 nanoparticles.  相似文献   

15.
A TiO2@SiO2 hybrid support was prepared by the sol-precipitation method using n-octylamine as a template.The photocatalyst manganese phthalocyanine tetrasulfonic acid (MnPcS) was immobilized on the support to form MnPcS-TiO2@SiO2.X-ray diffraction (XRD) and UV-Visible diffuse reflectance spectra (UV-Vis DRS) were employed to characterize the catalyst.The photocatalytic degradation of rhodamine B (RhB) and the catalytic oxidation of o-phenylenediamine (OPDA) under visible light irradiation were used as probe reactions.The mineralization efficiency and the degradation mechanism were evaluated using chemical oxygen demand (COD Cr) assays and electron spin resonance (ESR),respectively.RhB was efficiently degraded by immobilized MnPcS-TiO2@SiO2 under visible light irradiation.Complete decolorization of RhB occurred after 240 min of irradiation and 64.02% COD Cr removal occurred after 24 h of irradiation.ESR results indicated that the oxidation process was dominated by the hydroxyl radical (·OH) and superoxide radical (O-·2) generated in the system.  相似文献   

16.
A simple surface treatment was used to develop photocatalytic activity for stainless steel. AISI 304 stainless steel specimens after anodization were implanted by Ti ions at an extracting voltage of 50 kV with an implantation dose of 3 × 1015 atoms·cm?2 and then annealed in air at 450℃ for 2 h. The morphology was observed by scanning electron microscopy. The microstructure was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The photocatalytic degradation of methylene blue solution was carried out under ultraviolet light. The corrosion resistance of the stainless steel was evaluated in NaCl solution (3.5 wt%) by electrochemical polarization curves. It is found that the Ti ions depth profile resembles a Gaussian distribution in the implanted layer. The nanostructured Fe2O3/TiO2 composite film exhibits a remarkable enhancement in photocatalytic activity referenced to the mechanically polished specimen and anodized specimen. Meanwhile, the annealed Ti-implanted specimen remains good corrosion resistance.  相似文献   

17.
To enhance the CO-tolerance performance of anode catalysts for direct ethanol fuel cells, carbon nanotubes were modified by titanium dioxide (donated as CNTs@TiO2) and subsequently served as the support for the preparation of Pt/CNTs@TiO2 and Pt-Mo/CNTs@TiO2 electrocatalysts via a UV-photoreduction method. The physicochemical characterizations of the catalysts were carried out by using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy of adsorbed probe ammonia molecules. The electrocatalytic properties of the catalysts for methanol oxidation were investigated by the cyclic voltammetry technique. The results show that Pt-Mo/CNTs@TiO2 electrode exhibits the highest performance in all the electrodes. It is explained that, the structure, the oxidation states, and the acid-base properties of the catalysts are influenced due to the strong interaction between Ti and Mo species by adding TiO2 and MoO x to the Pt-based catalysts.  相似文献   

18.
以钛酸四正丁酯为原料,采用水热法制备铕掺杂TiO2粉末,对铕掺杂TiO2粉末的可见光光催化性能进行研究,并通过XRD、SEM分析对其进行表征。结果表明,铕掺杂TiO2粉末没有改变晶相结构,铕掺杂后使TiO2粉末由不规则形状转变为实心球状,且提高了TiO2粉末的光催化性能。模拟太阳光实验发现,铕掺杂TiO2粉末可明显提高其可见光光催化的降解能力,当辐照度为500W/m2、时间为240min时,其降解率达到78%。  相似文献   

19.
Four types of TiO 2 thin-film electrodes were fabricated from TiO 2 and Fe(III) doped TiO 2 sols using a layer-by-layer dip-coating technique. Electrodes fabricated were TF (pure TiO 2 surface, Fe(III)-TiO 2 bottom layer), FT (Fe(III)-TiO 2 surface, pure TiO 2 bottom layer), TT (both layers pure TiO 2 ) and FF (both layers Fe(III)-TiO 2 ). The photoelectrochemical behavior of these electrodes was characterized using linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and steady-state photocurrent measurements in aqueous 0.1 mol L –1 NaNO 3 containing varying concentrations of glucose or potassium hydrogen phthalate (KHP). EIS and LSV results revealed that exciton separation efficiency followed the sequence of TF﹥TT﹥FT > FF. Under a constant potential of +0.3 V, steady-state photocurrent profiles were recorded with varying organic compound concentrations. The TF electrode possessed the greatest photocatalytic capacity for oxidizing glucose and KHP, and possessed a KHP anti-poisoning effect. Enhanced photoelectrochemical performance of the TF electrode was attributed to effective exciton separation because of the layered TF structure.  相似文献   

20.
Al2O3/TiO2/Fe2O3/Yb2O3 composite powder was synthesized via the sol-gel method. The structure, morphology, and radar-absorption properties of the composite powder were characterized by transmission electron microscopy, X-ray diffraction analysis and RF impedance analysis. The results show that two types of particles exist in the composite powder. One is irregular flakes (100-200 nm) and the other is spherical Al2O3 particles (smaller than 80 nm). Electromagnetic wave attenuation is mostly achieved by dielectric loss. The maximum value of the dissipation factor reaches 0.76 (at 15.68 GHz) in the frequency range of 2-18 GHz. The electromagnetic absorption of waves covers 2-18 GHz with the matching thicknesses of 1.5-4.5 mm. The absorption peak shifts to the lower-frequency area with increasing matching thickness. The effective absorption band covers the frequency range of 2.16-9.76 GHz, and the maximum absorption peak reaches -20.18 dB with a matching thickness of 3.5 mm at a frequency of 3.52 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号