首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
如果函数y=f(x),在[a,b] 内连续,在区间(a,b)内可微,则有 f(b)-f(a)/b-a=f′(ξ) 其中ξ∈(a,b),b>a这时设y=f′(ξ)是[a,b]上的有界函数,则有如下结论:(1)若f′(ξ)≥m f(b)-f(a)≥(b-a)m(2)若f′(ξ)≤m f(b)-f(a)≤(b-a)m(3)若n≤f(ξ)≤m n(b-a)≤f(b)-f(a)≤m(b-a)  相似文献   

2.
在不定积分中,其中之一的积分方法:设y=f(x),x=φ(t)及f′(t)都是连续的,x=φ(t)的反函数t=φ~(-a)(x)存在且可导,并且∫f[φ(t)]·φ′(t)dt=F(t)+C,则∫f(x)dx=F[φ~(-a)(x)]+C。在定积分中的换元法则是:对于定积分integral from n=a to b(f(x)dx),其中f(x)在区间[a,b]上连续,如果函数x=0φ(t)满足下列条件(1)φ(t)在区间[α,β]上有定义′是单值的′单调的,且有连续导数φ′(t)。(2)当t在区间[α,β]上变化时,x=φ(t)的值在区间[a,b]上变化,在这些条件下,则有公式integral from n=a to b(f(x)dx)=integral from n=α to β(f[φ(t)·φ′(t)dt)  相似文献   

3.
本文将证明牛顿—莱布尼兹公式对于 schwarz 导数亦成立。设函数 f(x)定义在[a,b]上,若对于 x∈(a、b)(?)(f(x+h)-f(x-h))/(2h)存在,则该极限值为 f(x)在点 x 的 schwarz 导数。记作 f~s(x)引理1 设 f(x)是[a,b]上的连续函数,f~s(x)在(a、b)上存在,若 f(b)>(<)f(a),则存在点,c∈(a,b),使得:f~s(c)≥0(≤0)引理2 设 f(x)在[a,b]上连续,f~s(x)在(a,b)上存在,f(a)=f(b)=0,则存在点 x_1,a相似文献   

4.
设{L_n}是从 C[a,b]到 C[c,d]的一列算子,[c,d][a,b],如果存在一个函数列{φ_n(x)}在[c,d]上一致趋于0,在(c,d)上为正,满足以下两条:(1)存在函数类 T(L_n)使(φ_n(x))~(-1)[f(x)-L_n(f,x)]=0,x∈(c,d),成立,当且仅当 f∈T(L_n).(2)存在函数 f_n∈C[a,b],f_0∈T(L_n),使  相似文献   

5.
文〔1〕将牛顿——莱布尼兹公式进行了推广,本文进一步推广为:定理设函数f(x)在〔a,b〕上连续,并且 f_+′(x)与 f_-′(x)在(a,b)内存在,如果存在 p、q≥0,满足 p+q=1,使得函数 pf_+′(x)+qf_--′(x)在〔a,b〕上黎曼可积,则integral from b to a (pf_+′(x)+qf_--′(x))dx=f(b)-f(a).为证此结果先介绍两个有用的引理.引理1 设 f(x)在〔a,b〕上连续,并且 f_+′(x)与 f_--′(x)在(a,b)内存在,则存在ξ∈(a,b)  相似文献   

6.
提到中值定理,读者会想到罗尔、拉格朗日、柯西等微分中值定理及积分中值定理。文[1]中又提出了微分学中的一个结论(称为中值定理),表述如下:定理设函数 f(x),g(x)在[a,6]上连续,在(a,6)内有连续导数 f′(x),g′(x),g′(x)≠0,则存在ξ∈[a,b]使有  相似文献   

7.
一、引理引理1 若函数f(x)在闭区间[a,b]连续,则f(x)在[a,b]上一致连续.引理2 若函数f(x)在[a,b]及[b,c]都一致连续,则f(x)在[a,c]上一致连续.注改[b,c]为[b, ∞)时,结论也成立.引理3 设函数f(x)在开区间(a,b)连续,则f(x)在(a,b)一致连续的充分必要条件是f(a 0)、f(b-0)都存在且为有限值.证明见[1]之正文及相应习题.二、主要结论定理1 若函数f(x)在区间I(I可开、半开、有限或无限,下同)可导,且f’(x)在I有界,则函数f(x)在I一致连续.  相似文献   

8.
早在数学的启蒙阶段,随着微积分理论的成熟,即建立了著名的拉格朗日中值定理:假设实函数f:[a,b]→R连续且在(a,b)上每一点处可微,则必存在t_0∈(a,b)使得(1) f(b)-f(a)=f′(t_0)(b-a). 本世纪以来,随着泛函分析微分理论的发展,又有相应的微分中值定理出现,例如弱可  相似文献   

9.
利用介值定理和拉格朗日中值定理证明了命题:设函数f(x)在[0,1]上连续,在(0,1)内可导,且f ′(x)>0, f(0)=0, f(1)=1,则存在ξ1,ξ2∈(0,1),使得1/f′(ξ1)+1/f′(ξ2)=2。通过对命题证明过程的分析,对命题进行了推广。  相似文献   

10.
利用介值定理和拉格朗日中值定理证明了命题:设函数f(x)在[0,1]上连续,在(0,1)内可导,且f′(x)0,f(0)=0,f(1)=1,则存在ξ1,ξ2∈(0,1),使得1/f′(ξ1)+1/f′(ξ2)=2。通过对命题证明过程的分析,对命题进行了推广。  相似文献   

11.
本文给出了洛比达法则的一个十分简洁的证明,考察了其若干应用,部分地得到了洛比达法则的逆定理.定理 A:设 f(x)、g(x)在(a,b)内可微且对一切x∈(a,b)都有 g′(x)≠0;这里-∞≤a相似文献   

12.
本文在Riemann积分第二中值定理中,加上一个非常一般化的条件后,得出了一个较强的结果:设函数f在区间[a,b]上非负、不增,且f(a+0)-f(b-0)>0,函数g在[a,b]上Riemann可积,则存在一点ξ∈(a,b),使得integral from n=a to b f(x)g(x)dx=f(a)integral from n=a to ξ g(x)dx。  相似文献   

13.
本文主要系构造一辅助函数,从而将哥西中值定理推广到n个函数。茲先讨论三个函数的情形。定理1 设函数f(x),φ(x),ψ(x)在闭区间[a,b]上连续,在开区间[a,b]上可微,则一定有这样—点c(a相似文献   

14.
<正> Sard定理右f(x)d[a,b]上连续可微,则集合{f(x):f'(x)=0}的Lcbcsgnc测度为零。为证明此定理,我们先证一个引理: 引理若f(x)在[a,b]上连续可微,则对任开集A[a,b],有{f(x):x∈A}  相似文献   

15.
<正> 在微积分中,为解决含参量积分的求导与积分顺序可交换的问题,教科书上多采用下述定理1与定理2。 定理1 若函数f(x,y)与f_y(x,y)在R[a,b;c,d]上连续,则函数φ(y)=integral from n=a to b(f(x,y)dx)在[c,d]上可导,且 φ′(y)=integral from n=a to b(f_y(x,y)dx) (1)  相似文献   

16.
关于“中间点”的渐近性的一个注记   总被引:2,自引:0,他引:2  
第一积分中值定理设f(x)在[a,b)上连续,g(x)在[a,b)上可积且不变号,则存在ξ∈(a,b)使得(1)文[1]讨论了(1)中的“中闻点”ξ当b→a~+时的渐近性,即下述下理1.定理1 若f(x)与g(x)在[a,b]上连续,且g(x)在(a,b)上不变号,f+(a)(f+(a)表示f在a点的右导数,下同)存在且不等于零,g(a)≠0,则对于(1)中的ξ有  相似文献   

17.
设f:[0,1]×R2→R满足Caratheodory条件,a,b,e∈L1[0,1],利用Leray Schauder原理,获得了边值问题:xn=f(t,x(t),x′(t))+e(t),t∈(0,1),αx(0)-βx′(0)=∫01 a(t)dt,γx(1)+δx′(1)=∫01 b(t)x(t)dt,解的存在性.  相似文献   

18.
本学报1979年第2期及1980年第3期分别载文论述了积分第一中值定理就“中值”c∈(a,b)的情形的证明,为适应教学需要,对此本文再较条理地整理如下。定理设函数f(x)在区间〔a,b〕上连续,函数g(x)在〔a,b〕上可积且不变号,则存在点c∈(a,6),使得  相似文献   

19.
<正>在一般的高等数学或数学分析教科书中,著名的Newton-Leibniz公式由下述形式给出:定理设f(x)在[a,b]上连续,若在[a,b]上存在一可微函数F(x),使得F'(x)=f(x).则本文的目的是给出该定理的一种推广形式,即将上述定理中的F'(x)=f(x)换成f(x)是关于单调增加函数g(x)的导数,得到了与Riemann—Stieltjes积分有关的更一般的结论,并以上述定理为其特例.  相似文献   

20.
证明“彐ξ∈(a,b),使f′(ξ)=0”是Rolle定理应用中重要题型,关键是寻找问题中的f(x),即作辅助函数f(x)。Lagrange中值定理也正是在找到这样的f(x)后利用Rolle定理来证明的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号