首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 353 毫秒
1.
利用基于密度泛函理论的第一原理赝势法,研究了Ni2MnIn合金Heusler结构和四方马氏体结构的晶体结构参数、电子结构及微观磁性特征.通过对能带、各原子轨道磁矩和分波态密度(PDOS)的计算分析,发现二种结构中各原子的原子轨道磁矩、元胞轨道磁矩、元胞体积均变化不明显,两相均具有明显自旋极化现象.计算表明:四方马氏体相变导致Ni2MnIn元胞费米能下降0.495eV;Ni2MnIn结构中,In原子具有弱抗磁性,晶胞磁矩为Mn原子轨道磁矩所主导,约占元胞总轨道磁矩85%,Ni原子轨道磁矩贡献约占元胞总轨道磁矩15%.理论计算结果与其他理论值进行了对比.  相似文献   

2.
基于密度泛函理论架构下的第一性原理方法,对Hg_2CuTi型Mn_2NiAl的能量随四方变形的变化、晶格常数、磁矩、电子态密度、体弹模量等进行了计算.结果表明:i)在四方变形过程中,在c/a接近1及1.24附近各存在一个稳定的状态,分别对应于奥氏体态和马氏体态. ii)在奥氏体和马氏体两态下, Mn_2NiAl的总磁矩主要是由Mn原子提供, A、B晶位Mn原子的磁矩呈现为亚铁磁结构. iii)在奥氏体和马氏体两态下, Mn(A)或Mn(B)原子自旋向上和自旋向下的态密度形成较大的自旋劈裂,产生较大的磁矩.处于不同晶位的两个Mn原子之间的d-d直接交换作用较弱,维持了它们之间的反铁磁耦合,而处于同一晶位的Mn原子之间的铁磁耦合是由Al原子的s电子为媒介的间接交换作用来维持,此即为Mn2NiAl亚铁磁结构形成的机制. iv)Mn_2NiAl的抗压缩性比Ni_2MnGe, Ni_2MnGa和Ni_2MnB的均小.  相似文献   

3.
运用基于密度泛函理论第一性原理的投影扩充波函数(PAW)方法,计算了化学计量Ni2MnAl的晶体结构、磁性、电子结构、压力响应以及柔和四方变形.结果表明:在Ni2MnAl的总磁矩中,Mn原子对总磁矩的贡献最大;在Ni2MnAl的总态密度中,低能部分主要由Al-s的投影态密度决定,高能部分主要由Ni-d,Mn-d和Al-p的投影态密度决定;Ni和Mn原子间存在较强的键合,Al的p态和Mn的d态存在与自旋相关的杂化;在Ni2MnAl的四方变形中,0.95c/a1.10内存在一个变化平缓的能量面.  相似文献   

4.
设计团簇Ni_3CoP模型对非晶态合金Ni-Co-P进行局域结构的模拟,基于密度泛函理论(DFT)并在B3LYP/Lanl2dz水平下运用Gaussian 09程序对其进行结构优化以及有关电子性质与磁性的计算,对所得到的理论数据进行分析.结果表明:团簇Ni_3CoP费米能级左侧的最高峰由Ni-d、Co-d、P-p共振产生,形成了d-d-p杂化的成键轨道,并主要由Ni-d轨道贡献;对于团簇Ni_3CoP内部的电子转移,以P原子提供电子的能力最强,Co原子次之,Ni原子则整体以接受电子为主.团簇Ni_3CoP 3重态下的构型具有磁性,且Ni原子磁矩对团簇总磁矩的贡献较大.分析d轨道的电子自旋态密度图,发现其对称性最不好,这说明其上的成单电子最多,是团簇磁性的主要来源.同时,研究还发现p轨道对团簇磁性的贡献同样不可忽略.  相似文献   

5.
利用基于密度泛函理论的第一性原理, 计算Mn2NiAl的晶体结构、 四方变形、 磁性、 电子结构和压力响应. 计算结果表明: Mn2NiAl在立方奥氏体相的平衡结构为铁磁态MnMnNiAl型结构, 其中Mn原子占据A和B不等价晶位; 在由立方结构向四方结构的变形中, 在c/a≈1.24处存在一个稳定的马氏体相; 在奥氏体相和马氏体相下, Mn原子对Mn2NiAl总磁矩的贡献最大,  Mn(A)和Mn(B)原子磁矩的值不等并呈反平行耦合, 且Mn(A)-d和Mn(B)-d的投影态密度在费米面附近交叠均较少,  相似文献   

6.
采用基于密度泛函理论的第一性原理,对Heusler合金Mn2NiSi的电子结构和磁性进行了研究。计算结果表明:从立方结构到四方结构的相变降低了总能量,表明马氏体相是更加稳定的。随着温度的降低,Mn2NiSi经历了从奥氏体到马氏体的转变,体积几乎不变,表明了该合金具有形状记忆行为。磁基态是亚铁磁,Mn(A)和Mn(B)磁矩是反平行排列的、并且不等。奥氏体相和马氏体相的总磁矩分别是9.64×10-24A·m2和2.60×10-24A·m2。在这两种结构中,Mn(A)和Mn(B)是Mn2NiSi总磁矩的主要贡献者。根据态密度解释了马氏体相变和磁性的产生。  相似文献   

7.
运用基于密度泛函理论第一性原理的投影扩充波函数(PAW)方法, 计算了化学计量Ni2MnAl的晶体结构、 磁性、 电子结构、 压力响应以及柔和四方变形.  结果表明:  在Ni2MnAl的总磁矩中, Mn原子对总磁矩的贡献最大; 在Ni2MnAl的总态密度中, 低能部分主要由Al-s的投影态密度决定, 高能部分主要由Ni-d,Mn-d和Al-p的投影态密度决定; Ni和Mn原子间存在较强的键合, Al的p态和Mn的d态存在与自旋相关的杂化; 在Ni2MnAl的四方变形中,  0.95<c/a<1.10内存在一个变化平缓的能量面.  相似文献   

8.
研究了四元Heusler合金CrFeMnAl的结构和磁性。基于密度泛函理论(DEF)的第一性原理方法,借助于Materials Studio 6.0软件,对其晶体结构进行了优化。得到的最优晶格常数为5.86(0),总磁矩为0。进行了能带结构和态密度的分析,得到如下结论:四元Heusler合金CrFeMnAl自旋向上方向费米能级附近态密度为0;自旋向下费米能级处态密度不为0,磁性主要是Cr原子3d电子分别与Fe原子3d和Mn原子的3d劈裂杂化所致,CrFeMnAl是一个半金属惠斯勒合金。  相似文献   

9.
本文在三元Heusler合金Mn_2VAl的基础上掺杂Co原子得到四元合金Mn_2V_(0.5)Co_(0.5)Al,基于密度泛函理论(DFT)的第一性原理赝势方法结合广义梯度近似(GGA),对四元Heusler合金Mn_2V_(0.5)Co_(0.5)Al的电子结构、磁性及半金属特性进行计算。结果表明,Co原子掺入能抑制Mn_2V_(0.5)Co_(0.5)Al四元合金体系无序结构的形成,该四元合金是一种具有磁矩完全补偿的半金属材料,平衡晶格常数为0.5747 nm,具有100%自旋极化率,半金属特性较好,总态密度来源于Mn~1-3d、Mn~2-3d、Co-3d、V-3d轨道的电子自旋及其相互杂化作用。此外,当晶格常数在0.57~0.59 nm范围内变化时,Mn_2V_(0.5)Co_(0.5)Al合金仍能保持磁矩完全补偿性和半金属性。  相似文献   

10.
采用第一性原理计算方法对四元全赫斯勒合金FeCrMnSi的电子结构、半金属性和磁性,以及力学性能进行了理论计算。计算结果表明,该合金是一种半金属亚铁磁性材料,具有100%的自旋极化率,平衡晶格常数为5.594?。合金具有良好的磁性,磁性来源于Fe-3d、Cr-3d和Mn-3d轨道的电子自旋以及它们之间的相互杂化作用。研究合金的磁性和晶格常数之间的关系发现,Mn原子和Cr原子的磁矩随晶格常数的改变发生明显变化,但是由于Cr原子和Mn原子磁矩的反向耦合作用,导致合金的总磁矩不变,说明外力作用对合金磁性没有影响。通过对力学性能的研究发现,该合金具有良好的力学延展性,是一种各向异性材料。  相似文献   

11.
基于全电子势线性缀加平面波方法(FP—LAPW)的第一性原理计算,研究了纯有机化合 物NIT-2-O1的电子能带结构和它的铁磁性质,具体计算了该化合物总的态密度和各原子的分态密度,讨论了各原子的自旋磁矩,结果发现该化合物中未成对电子被局域在NO基团的反键分子轨道上,从而提供了该化合物的净磁矩,磁矩的顺序排列构成了该化合物的铁磁相互作用。本对NIT-2-O1中铁磁机制的起源做了深入讨论。  相似文献   

12.
采用基于密度泛函理论的第一性原理,对 Heusler合金 Mn2 NiSi的电子结构和磁性进行了研究。计算结果表明:从立方结构到四方结构的相变降低了总能量,表明马氏体相是更加稳定的。随着温度的降低, Mn2 NiSi经历了从奥氏体到马氏体的转变,体积几乎不变,表明了该合金具有形状记忆行为。磁基态是亚铁磁,Mn(A)和 Mn(B)磁矩是反平行排列的、并且不等。奥氏体相和马氏体相的总磁矩分别是9.64×10-24 A·m2和2.60×10-24 A·m2。在这两种结构中,Mn(A)和 Mn(B)是 Mn2 NiSi 总磁矩的主要贡献者。根据态密度解释了马氏体相变和磁性的产生。  相似文献   

13.
运用MaterialsStudio6.0程序CASRTEP软件包建立L21型Ni2MnGe单胞和1×1×5的Ni2.25Mn0.75Ge超胞模型,采用GGA-PBE-TS近似,得出能带结构和态密度曲线。由Ni2MnGe单胞的能带结构和态密度图可以看出自旋向上和自旋向下的能带都没有出现带隙,说明Ni2MnGe单胞具有金属性,在费米能级附近不同自旋能带具有明显差别,从而导致Ni2MnGe具有较大磁性;通过分析1×1×5的Ni2.25Mn0.75Ge超胞的能带结构和态密度图可以得到同样的结论,即Ni2.25Mn0.75Ge具有金属性,在费米能级附近不同自旋能带具有明显差别,从而导致Ni2MnGe具有较大磁性。2种晶体中Ni原子自旋向上和自旋向下的态密度占据量几乎相同,因此Ni原子的磁矩很小,而Mn原子d轨道的电子几乎全部局域在自旋向上的态密度中,因此Mn原子磁矩较大。Ni2.25Mn0.75Ge中Ni(A)与Mn存在p-d杂化,比Ni2MnGe中p-d杂化作用更强,这是由于Ni替换了Mn的缘故。  相似文献   

14.
根据CrTe和MnTe各种结构的稳定性,选取具有NiAs结构、岩盐结构和闪锌矿结构的CrTe为基本骨架,以Mn原子替换Cr原子形成掺杂的稀磁半导体CrxMn1-xTe.使用基于密度泛函理论的VASP软件包,计算其形成能、态密度和磁矩,并比较不同x值对性能的影响.结果表明,掺杂后3种结构的稳定性为NiAs结构岩盐结构闪锌矿结构;Mn原子掺杂NiAs结构后,NiAs结构发生向闪锌矿结构的相变,对闪锌矿结构掺杂未发生相变;3种结构的磁矩均随Mn原子的增多而增大.  相似文献   

15.
运用基于密度泛函理论的第一性原理,对3种 Heusler合金Mn2RhZ(Z=In, Sn, Sb)的原子占位、晶体结构、晶格畸变和磁学性质等性能进行了研究.结果表明, Hg2CuTi型结构3种Heusler合金相比Cu2MnAl型结构表现得更为稳定;在由立方结构至四方结构的变形中,Mn2RhZ(Z=In, Sn, Sb)分别在c/a=1.38,1.29,1.29处出现总能量的最小值,分别对应稳定的马氏体相;Mn2RhZ(Z=In, Sn, Sb)的总磁矩主要源于Mn原子磁矩,奥氏体相下Mn2RhSb合金中的2个Mn原子磁矩呈现反平行耦合,表现出铁磁性,而在奥氏体、马氏体相下Mn2RhZ(Z=In, Sn)以及马氏体相下Mn2RhSb合金表现出亚铁磁结构,因而Mn2RhZ(Z=In, Sn, Sb)是潜在的具有磁性形状记忆效应的合金材料.  相似文献   

16.
本文利用密度泛函理论对BnX(n=1~11; X=B, Be, Mn)基态结构、稳定性、电子构型与磁性开展了系统研究. 结果表明: 团簇BnX( n=5~11; X=Be, Mn)中的X原子均位于高配位,BnBe的基态构型为多重度为1或2的低重态;团簇BnX的平均结合能均随尺寸的增大而逐渐增大,n取值相同时,Bn+1团簇的平均结合能最高. HOMO-LOMO能隙结果表明, 掺杂铍原子、锰原子有利于提高纯硼团簇的化学活性;团簇BnBe中的Be原子是电荷的受体,团簇BnMn中Mn原子轨道电子表现出显著的spd杂化;团簇BnX (X=B,Be)中的开壳层结构磁矩主要由2p轨道贡献. 团簇BnMn均为开壳层结构,总磁矩主要由Mn3d轨道贡献. 随着团簇BnMn尺寸的增大,Mn原子的配位数增大,B-Mn平均键长增大,Mn3d轨道磁矩减小而导致团簇的总磁矩减小.  相似文献   

17.
采用基于密度泛函理论的第一性原理计算方法探究了Na掺杂InN的电子结构和磁学性质.计算结果表明,Na掺杂InN为p型掺杂,一个Na原子掺杂的InN体系可产生2. 0μB的磁矩,其中Na最近邻的N原子对磁矩的贡献最大.态密度图和自旋密度分布图显示两个掺杂的Na原子之间的N原子间存在较强的p-p相互作用,因此由两个Na原子掺杂产生的磁矩间的耦合为长程铁磁耦合.  相似文献   

18.
利用密度泛函理论(DFT)方法,在B3LYP/Lan12dz水平下,对原子簇CoMn2B2的14种可能构型分别在二、四重态下进行全参数优化计算和频率验证,获得了6种二重态稳定构型,6种四重态稳定构型;分别对这些稳定构型的能量、电荷分布、不同构型磁矩的情况进行研究分析。结果表明:原子簇CoMn2B2所有构型中1(4)最稳定。原子簇CoMn2B2中各原子所带电荷受多重态的影响较小,Mn原子带负电,Co原子和B原子带正电。Mn原子的外层轨道布居数变化较大。Mn原子和Co原子的磁矩主要受原子簇的多重度的影响较大。  相似文献   

19.
介绍了新近发展的基于密度泛函理论的全势能线性缀加平面波((L)APW)+局域轨道(lo)方法, 并对R(Fe, Si)12化合物(R=Y, Nd)作了理论计算. 由结构优化后的单胞总能量分析了Si原子的占位分布, 计算得到并分析了Si原子替代晶位不同引起的原子磁矩、总态密度和局域态密度的变化特点. 结果表明RFe10Si2化合物(R=Y, Nd)饱和磁矩明显大于同类RFe10M2化合物(M=Ti, V, Cr, Mn, Mo和W), Si原子在化合物中存在两种杂化机制, Si(8j)原子会同时减小3种晶位Fe原子磁矩, Si(8f )则主要减小Fe(8i)与Fe(8j)原子磁矩. 由Fermi面态密度变化分析认为加入Si原子会大大提高化合物居里温度.  相似文献   

20.
以团簇Ni4P作为二元体系Ni-P非晶态合金的局域结构,采用密度泛函理论,在B3LYP/Lanl2dz水平下分别对不同重态下的构型进行优化计算,从HOMO、LUMO轨道贡献、各轨道未成对电子数、磁矩和自旋态密度角度分析发现:Ni、P原子对轨道贡献率受空间结构的影响,但受自旋多重度的影响极小;Ni原子是前线轨道的主要贡献者,P原子对其贡献亦不可忽略,说明催化活性是以Ni原子为主,P原子为辅所提供,且Ni原子最可能为团簇Ni4P的催化活性位点;构型1(4)~2(2)的磁性由d轨道上的自旋向上的α电子贡献,且四重态贡献较二重态更为显著,构型3(4)~3(2)的磁性主要由p轨道贡献;构型1(4)的磁矩分布范围最大,构型2(4)的磁矩分布次之;电子自旋具有不确定性,导致其α、β电子发生部分偏转.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号