首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
运用基于密度泛函理论第一性原理的投影扩充波函数(PAW)方法, 计算了化学计量Ni2MnAl的晶体结构、 磁性、 电子结构、 压力响应以及柔和四方变形.  结果表明:  在Ni2MnAl的总磁矩中, Mn原子对总磁矩的贡献最大; 在Ni2MnAl的总态密度中, 低能部分主要由Al-s的投影态密度决定, 高能部分主要由Ni-d,Mn-d和Al-p的投影态密度决定; Ni和Mn原子间存在较强的键合, Al的p态和Mn的d态存在与自旋相关的杂化; 在Ni2MnAl的四方变形中,  0.95<c/a<1.10内存在一个变化平缓的能量面.  相似文献   

2.
利用基于密度泛函理论的第一性原理, 计算Mn2NiAl的晶体结构、 四方变形、 磁性、 电子结构和压力响应. 计算结果表明: Mn2NiAl在立方奥氏体相的平衡结构为铁磁态MnMnNiAl型结构, 其中Mn原子占据A和B不等价晶位; 在由立方结构向四方结构的变形中, 在c/a≈1.24处存在一个稳定的马氏体相; 在奥氏体相和马氏体相下, Mn原子对Mn2NiAl总磁矩的贡献最大,  Mn(A)和Mn(B)原子磁矩的值不等并呈反平行耦合, 且Mn(A)-d和Mn(B)-d的投影态密度在费米面附近交叠均较少,  相似文献   

3.
利用基于密度泛函理论的第一原理赝势法,研究了Ni2MnIn合金Heusler结构和四方马氏体结构的晶体结构参数、电子结构及微观磁性特征.通过对能带、各原子轨道磁矩和分波态密度(PDOS)的计算分析,发现二种结构中各原子的原子轨道磁矩、元胞轨道磁矩、元胞体积均变化不明显,两相均具有明显自旋极化现象.计算表明:四方马氏体相变导致Ni2MnIn元胞费米能下降0.495eV;Ni2MnIn结构中,In原子具有弱抗磁性,晶胞磁矩为Mn原子轨道磁矩所主导,约占元胞总轨道磁矩85%,Ni原子轨道磁矩贡献约占元胞总轨道磁矩15%.理论计算结果与其他理论值进行了对比.  相似文献   

4.
基于密度泛函理论架构下的第一性原理方法,对Hg_2CuTi型Mn_2NiAl的能量随四方变形的变化、晶格常数、磁矩、电子态密度、体弹模量等进行了计算.结果表明:i)在四方变形过程中,在c/a接近1及1.24附近各存在一个稳定的状态,分别对应于奥氏体态和马氏体态. ii)在奥氏体和马氏体两态下, Mn_2NiAl的总磁矩主要是由Mn原子提供, A、B晶位Mn原子的磁矩呈现为亚铁磁结构. iii)在奥氏体和马氏体两态下, Mn(A)或Mn(B)原子自旋向上和自旋向下的态密度形成较大的自旋劈裂,产生较大的磁矩.处于不同晶位的两个Mn原子之间的d-d直接交换作用较弱,维持了它们之间的反铁磁耦合,而处于同一晶位的Mn原子之间的铁磁耦合是由Al原子的s电子为媒介的间接交换作用来维持,此即为Mn2NiAl亚铁磁结构形成的机制. iv)Mn_2NiAl的抗压缩性比Ni_2MnGe, Ni_2MnGa和Ni_2MnB的均小.  相似文献   

5.
运用MaterialsStudio6.0程序CASRTEP软件包建立L21型Ni2MnGe单胞和1×1×5的Ni2.25Mn0.75Ge超胞模型,采用GGA-PBE-TS近似,得出能带结构和态密度曲线。由Ni2MnGe单胞的能带结构和态密度图可以看出自旋向上和自旋向下的能带都没有出现带隙,说明Ni2MnGe单胞具有金属性,在费米能级附近不同自旋能带具有明显差别,从而导致Ni2MnGe具有较大磁性;通过分析1×1×5的Ni2.25Mn0.75Ge超胞的能带结构和态密度图可以得到同样的结论,即Ni2.25Mn0.75Ge具有金属性,在费米能级附近不同自旋能带具有明显差别,从而导致Ni2MnGe具有较大磁性。2种晶体中Ni原子自旋向上和自旋向下的态密度占据量几乎相同,因此Ni原子的磁矩很小,而Mn原子d轨道的电子几乎全部局域在自旋向上的态密度中,因此Mn原子磁矩较大。Ni2.25Mn0.75Ge中Ni(A)与Mn存在p-d杂化,比Ni2MnGe中p-d杂化作用更强,这是由于Ni替换了Mn的缘故。  相似文献   

6.
采用基于密度泛函理论的第一性原理,对Heusler合金Mn2NiSi的电子结构和磁性进行了研究。计算结果表明:从立方结构到四方结构的相变降低了总能量,表明马氏体相是更加稳定的。随着温度的降低,Mn2NiSi经历了从奥氏体到马氏体的转变,体积几乎不变,表明了该合金具有形状记忆行为。磁基态是亚铁磁,Mn(A)和Mn(B)磁矩是反平行排列的、并且不等。奥氏体相和马氏体相的总磁矩分别是9.64×10-24A·m2和2.60×10-24A·m2。在这两种结构中,Mn(A)和Mn(B)是Mn2NiSi总磁矩的主要贡献者。根据态密度解释了马氏体相变和磁性的产生。  相似文献   

7.
采用基于密度泛函理论的第一性原理,对 Heusler合金 Mn2 NiSi的电子结构和磁性进行了研究。计算结果表明:从立方结构到四方结构的相变降低了总能量,表明马氏体相是更加稳定的。随着温度的降低, Mn2 NiSi经历了从奥氏体到马氏体的转变,体积几乎不变,表明了该合金具有形状记忆行为。磁基态是亚铁磁,Mn(A)和 Mn(B)磁矩是反平行排列的、并且不等。奥氏体相和马氏体相的总磁矩分别是9.64×10-24 A·m2和2.60×10-24 A·m2。在这两种结构中,Mn(A)和 Mn(B)是 Mn2 NiSi 总磁矩的主要贡献者。根据态密度解释了马氏体相变和磁性的产生。  相似文献   

8.
以团簇Ni4P作为二元体系Ni-P非晶态合金的局域结构,采用密度泛函理论,在B3LYP/Lanl2dz水平下分别对不同重态下的构型进行优化计算,从HOMO、LUMO轨道贡献、各轨道未成对电子数、磁矩和自旋态密度角度分析发现:Ni、P原子对轨道贡献率受空间结构的影响,但受自旋多重度的影响极小;Ni原子是前线轨道的主要贡献者,P原子对其贡献亦不可忽略,说明催化活性是以Ni原子为主,P原子为辅所提供,且Ni原子最可能为团簇Ni4P的催化活性位点;构型1(4)~2(2)的磁性由d轨道上的自旋向上的α电子贡献,且四重态贡献较二重态更为显著,构型3(4)~3(2)的磁性主要由p轨道贡献;构型1(4)的磁矩分布范围最大,构型2(4)的磁矩分布次之;电子自旋具有不确定性,导致其α、β电子发生部分偏转.  相似文献   

9.
介绍了新近发展的基于密度泛函理论的全势能线性缀加平面波((L)APW)+局域轨道(lo)方法, 并对R(Fe, Si)12化合物(R=Y, Nd)作了理论计算. 由结构优化后的单胞总能量分析了Si原子的占位分布, 计算得到并分析了Si原子替代晶位不同引起的原子磁矩、总态密度和局域态密度的变化特点. 结果表明RFe10Si2化合物(R=Y, Nd)饱和磁矩明显大于同类RFe10M2化合物(M=Ti, V, Cr, Mn, Mo和W), Si原子在化合物中存在两种杂化机制, Si(8j)原子会同时减小3种晶位Fe原子磁矩, Si(8f )则主要减小Fe(8i)与Fe(8j)原子磁矩. 由Fermi面态密度变化分析认为加入Si原子会大大提高化合物居里温度.  相似文献   

10.
Heusler合金,是有序的三元金属间化合物。围绕full-Heusler合金Ni_2MnSn力学性能和电子性能展开计算,利用基于密度泛函理论的第一性原理方法,从量子力学角度考虑了电子的电荷特性和自旋特性。建立full-Heusler合金Ni_2MnSn的结构模型,计算最优化晶格常数、能带结构和态密度;测试其体模量、剪切模量、杨氏模量和泊松比。计算得到总磁矩为-4.34μB,其中Mn原子的磁矩对总磁矩贡献最大,并通过对Ni_2MnSn态密度及各个原子态密度的分析,发现磁性来源于Mn原子的能级劈裂。在几何优化的基础上,进行了Ni_2MnSn的力学性能计算,发现Ni_2MnSn具有很好的延展性和塑性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号