首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
综合类   8篇
  2023年   1篇
  2021年   7篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
依据密度泛函理论在B3LYP/Lan12dz水平下对团簇NiCo2S4进行优化计算,确定12种优化构型,并对其电子性质进行分析.团簇NiCo2S4整体呈电中性,其内部电子均从Ni、Co原子流入S原子,且从s轨道流向p、d轨道.Ni、Co原子均是电子供体,S原子是电子受体.构型1(3)电子流动性最强,构型1(1)电子流动性最弱,且三重态整体电子流动性强于单重态.Ni-4s轨道和Co-4s轨道对团簇NiCo2S4整体电子流动性贡献最大,而S原子三个轨道贡献均较小.稳定性与电子密度分布有关,电子密度分布对称性越好,且α电子云和β电子云重叠程度越高的构型越稳定.  相似文献   
2.
为了探究微观状态下,团簇Co3MoS内部电子的变化情况及其流动机理,在B3LYP泛函高水平条件下,采用Lanl2DZ基组对团簇Co3MoS的电子性质进行了分析.优化分析后得到8种稳定构型,其中二重态和四重态各4种,含有四棱锥型、三角双锥型、单帽三角锥型3种形态.通过对团簇Co3MoS的电荷、布居数、原子及原子间的电子自旋密度和自旋密度图进行分析,可以得到:金属原子Co和Mo一般作为电子供体,非金属原子S一般作为电子受体,金属原子的存在对构型内部电子流动的贡献最大;团簇Co3MoS各原子主要由p轨道接受电子,s轨道提供电子,d轨道较为复杂,既有构型接受电子又有构型提供电子;α电子和β电子的分布情况对构型的稳定性会有一定的影响.  相似文献   
3.
以团簇Co3FeP为非晶态合金Co-Fe-P三元体系的局域模型,研究其热力学稳定性和电子性质.团簇Co3FeP共有9种优化构型,分别为平面五边形、三角双锥型和戴帽三棱锥型,其中单重态4种、三重态5种.构型1(3)的热力学稳定性最好,三重态比单重态的热力学稳定性好.Co原子易得到电子,P原子易失去电子,构型2(1)的电子转移能力最强.在Co原子和Fe原子内部,电子由4s轨道流向3d和4p轨道,且4s轨道对Co原子和Fe原子的电子转移贡献最大,构型的重态对Fe原子得失电子有影响.在P原子内部,电子由3s轨道流向3p和3d轨道,且3s轨道对P原子的电子转移贡献最大.  相似文献   
4.
以团簇Ni4P作为二元体系Ni-P非晶态合金的局域结构,采用密度泛函理论,在B3LYP/Lanl2dz水平下分别对不同重态下的构型进行优化计算,从HOMO、LUMO轨道贡献、各轨道未成对电子数、磁矩和自旋态密度角度分析发现:Ni、P原子对轨道贡献率受空间结构的影响,但受自旋多重度的影响极小;Ni原子是前线轨道的主要贡献者,P原子对其贡献亦不可忽略,说明催化活性是以Ni原子为主,P原子为辅所提供,且Ni原子最可能为团簇Ni4P的催化活性位点;构型1(4)~2(2)的磁性由d轨道上的自旋向上的α电子贡献,且四重态贡献较二重态更为显著,构型3(4)~3(2)的磁性主要由p轨道贡献;构型1(4)的磁矩分布范围最大,构型2(4)的磁矩分布次之;电子自旋具有不确定性,导致其α、β电子发生部分偏转.  相似文献   
5.
6.
利用Gaussian 09程序对团簇Mo2S4进行全参数的优化计算,根据前线轨道理论对计算所得的10种稳定构型进行催化析氢反应活性的研究,由前线轨道图及团簇Mo2S4与水分子的前线轨道能级差探究团簇Mo2S4在催化水解析氢中的反应活性,进而确定团簇Mo2S4催化析氢活性最好的理论模型。结果表明,团簇Mo2S4单重态构型的稳定性优于三重态构型,三重态构型催化水解析氢的能力相较于单重态构型更占优势;构型5(3)在吸附氢原子与解吸氢原子的反应中都有较好的反应活性,构型4(1)的反应活性最弱。  相似文献   
7.
为探究团簇Fe3Ni3优化构型的稳定性及其受外场影响的形变情况,并研究其催化性质,使用密度泛函理论中的B3LYP/Lanl2dz(Level)对设计出的初始构型进行全参数优化计算,将含虚频和能量较高的相同构型排除后,最终得到9种稳定的优化构型.从各优化构型的极化率、前线轨道及福井函数分析发现:构型4(3)的极化率最大,原子间的相互作用力最小,构型易发生形变,且构型4(3)的能隙差最小,电子从HOMO轨道向LUMO轨道转移的难度最小,在催化反应过程中反应活性最好; 单重态构型比三重态构型原子间相互作用力更强,结构更致密,不易发生形变; 在三重态构型中Fe原子是前线轨道的主要贡献者,是催化反应过程中的潜在活性位点,具有较强的得电子能力.而单重态构型与之相反,Ni原子是前线轨道的主要贡献者,在催化过程中提供电子的能力较强.  相似文献   
8.
为深入了解团簇Ti4P的电子性质以及催化性质,采用密度泛函理论,对团簇Ti4P所有构型优化和频率计算,得到7种优化构型.团簇Ti4P中电子主要由Ti原子流向P原子,且主要由Ti-4s轨道提供电子,P-3d轨道流入的电子最少.在所有优化构型中,2(2)转移电子的能力最弱,1(4)转移电子的能力最强.根据前线轨道理论研究团簇Ti4P的催化性质发现,前线轨道主要贡献者为Ti原子,所以该团簇存在的潜在催化活性位点极有可能就是Ti原子所在的位置.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号