首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
为研究斜拉桥轴向力作用下顶板-U肋焊缝裂纹的扩展特征以及裂纹对顶板局部受力的影响,建立了全桥模型模拟斜拉桥的成桥状态.通过ABAQUS中sub-model功能将成桥状态下的位移和受力作为节段模型的边界条件并在节段模型中添加车辆荷载,分析带裂顶板的最不利荷载工况,在最不利荷载工况下分析了不同长度顶板-U肋焊缝贯穿裂纹的扩展特征以及其对顶板-U肋焊缝细节局部受力的影响.结果表明:考虑斜拉桥轴力作用,顶板-U肋焊缝焊趾和焊根处贯穿裂纹均为Ⅰ型为主的Ⅰ-Ⅱ-Ⅲ型复合裂纹,轴向力作用对裂纹扩展影响较小;同一U肋中顶板-U肋焊缝焊根开裂会增加未开裂侧顶板应力,降低开裂侧焊缝应力;焊趾开裂会降低开裂侧顶板焊根应力,增加U肋焊趾应力和未开裂侧焊缝应力.  相似文献   

2.
为了研究正交异性钢桥面板U肋-横隔板的连接部位的疲劳问题,基于扩展有限元方法分析典型疲劳裂纹的扩展机理,并引入U肋-横隔板焊缝的残余应力,分析残余应力对疲劳裂纹扩展的影响。研究结果表明:萌生于横隔板开孔处的疲劳裂纹未考虑残余应力时不会扩展,加入残余应力后会改变裂纹的应力状态,裂尖应力可以驱动横隔板开孔处的裂纹扩展,裂纹扩展类型为Ⅰ型裂纹;萌生于U肋焊趾处的疲劳裂纹为Ⅰ型主导的Ⅰ-Ⅱ-Ⅲ复合型裂纹,残余应力会影响裂纹扩展角度;对于萌生于横隔板焊趾处的裂纹,相比于不考虑残余应力的情况,考虑残余应力的裂纹扩展规律与实桥开裂规律相符,说明对于焊缝疲劳裂纹,在疲劳评估时应考虑焊接过程中残余应力对评估结果的影响。  相似文献   

3.
吴晓东  朱金柱 《工程与建设》2022,36(1):10-12,22
疲劳荷载作用下,正交异性钢桥面板纵肋顶板焊趾处易产生疲劳裂纹.通过寻找焊趾处裂纹变化规律,可以预测裂纹扩展情况,不同结构参数组合下焊趾处裂纹变化规律会存在一定差异.文章通过建立纵肋顶板焊接细节的试件有限元模型,提取焊趾处裂纹扩展长度和裂纹扩展深度,分析应力幅大小、熔透率和顶板厚度等参数对焊趾处裂纹变化规律的影响.结果表...  相似文献   

4.
采用疲劳裂纹标准试件对钢箱梁疲劳裂纹长度、宽度、深度、倾斜角度及开裂位置等特征进行超声波检测试验,研究钢箱梁疲劳裂纹特征超声波检测方法。依据理论计算和试验结果,对比分析每种裂纹检测波形及回波参数,提出1/3测长法,给出测长法判断依据的理论解,与实际检测结果相符合;针对裂纹深度,提出裂纹深度检测的精度提高的方法;建立裂纹倾斜角度、开裂位置判定计算公式。分析面板与U肋焊缝处不同类型裂纹检测结果,给出裂纹距焊趾距离K计算公式,并由K建立焊趾、焊根、未溶透部位疲劳裂纹判别方法。研究结果表明:疲劳裂纹特征与回波参数存在一定的相关性,疲劳裂纹特征检测方法具有较好的准确性。  相似文献   

5.
为验证有效缺口应力法在正交异性钢桥面板疲劳评价中的适用性,开展了横隔板弧形切口2种不同过渡形式的局部应力研究.采用Ansys分别计算U肋与横隔板连接处焊趾和焊根处的有效缺口应力,并加以比较,表明焊趾处更易萌生裂纹.采用S-N曲线评估其疲劳寿命,表明有效缺口应力法可以应用于正交异性桥面板的疲劳评价.有限元分析假定缺口的真实半径为0,这可能导致试验结果的保守性.基于不同U肋厚度的比较,发现U肋厚度的增加将导致U肋与横隔板端焊缝处更易产生疲劳裂纹.相关研究结果可为正交异性钢桥面板的设计和疲劳评价提供参考.  相似文献   

6.
为研究车轮行驶位置对钢桥面板U肋对接焊缝疲劳性能的影响,现以江阴长江大桥为研究对象,采用数值模拟的方法,计算了不同车辆轮迹位置作用下U肋对接焊缝处的疲劳应力幅,结合BS5400规范得到了该细节相应位置的疲劳损伤度;建立U肋对接焊缝局部模型,模拟了不同车轮位置作用下疲劳裂纹扩展路径,同时得到了各扩展阶段的裂纹扩展参数。结果表明:车轮位置与焊缝之间距离大于600 mm,可忽略车辆位置对U肋对接焊缝开裂前的疲劳损伤累计;相对于其他部位,U肋两侧弧形段疲劳损伤严重,易产生疲劳裂纹;随着车轮位置的改变,裂纹扩展路径逐渐由与焊缝平行向与焊缝垂直发展,车轮位置与焊缝之间距离大于750 mm,可忽略车辆位置对U肋对接焊缝开裂后的裂纹扩展影响。  相似文献   

7.
针对正交异性钢桥面板顶板与U肋连接焊缝疲劳构造细节,选取了3个已有焊根疲劳裂纹的局部足尺试件(ICR-1,ICR-2和DB-1)作为研究对象,对ICR-1和ICR-2进行裂纹锤击闭合处理(ICR处理)及维护后疲劳加载.对DB-1的一半疲劳裂纹进行ICR处理,并沿垂直裂纹方向切开,获取原始裂纹断面及锤击后裂纹断面,采用金相显微镜对锤击深度、浅层组织金相等进行分析.研究结果表明:ICR处理可大幅提高原始裂纹的扩展寿命;在ICR处理区域两侧均会萌生新的疲劳裂纹,新裂纹的扩展寿命大于原始裂纹;ICR处理后,原始裂纹开口得到了较好的闭合,重新形成共同受力的结构;ICR处理可使试件表面母材发生明显的塑性流动,产生偏向于焊根、沿板厚方向的挤压效果.  相似文献   

8.
为研究钢桥面板顶板与竖向加劲肋连接角焊缝的疲劳性能,采用机械型振动疲劳试验机对制作的9个试件进行等幅疲劳加载,并通过名义应力和热点应力2种方法对试件焊缝疲劳性能进行评价。试验结果表明:疲劳荷载作用下,试件疲劳裂纹开展路径均从焊趾处萌生、沿焊趾开展、最终垂直于焊趾沿板横向往两侧对称扩展。采用名义应力法时,试验结果均位于JSSC-G疲劳强度为50 MPa的S-N曲线上方;采用热点应力法时,试验结果均位于Eurocode 3规范疲劳强度为100 MPa的S-N曲线上方。建议本试验构件疲劳细节的角焊缝疲劳强度取名义应力50 MPa、热点应力100 MPa。  相似文献   

9.
正交异性钢桥面具有轻质、高性能、施工便捷等应用优势,但其构造复杂且多采用焊接工艺,在反复交变车辆轮载作用下疲劳开裂问题突出。其中,顶板与纵肋连接焊缝(简称顶板-纵肋焊缝)和纵肋与橫肋连接焊缝(简称纵肋-橫肋焊缝)是两类最突出和最具代表性的构造细节。本文采用名义应力法和三种常用热点应力法,在充分考虑交通量对荷载修正的基础上,对上述两类钢桥面典型构造细节开展了精细化有限元分析,确定疲劳应力幅,并进行疲劳检算。通过分析和对比各疲劳评价方法,提出适用于各类构造细节的计算方法。分析结果表明,分析顶板-纵肋构造细节和纵肋-橫肋焊趾截止处纵肋腹板竖向开裂推荐采用表面线性外推方法(Linear Surface Extropolation, LSE)方法,分析纵肋-橫肋焊趾截止处纵肋腹板横向开裂推荐采用Dong方法。研究结果可为正交异性钢桥面的评估、设计和应用提供参考。  相似文献   

10.
建立焊接分析有限元模型,对顶板-纵肋双面焊构造的焊接过程进行数值模拟,拟合得到顶板焊趾细节沿板厚方向分布的横向残余应力分布经验公式;建立钢桥面板断裂力学数值模型,结合统一的权函数表达式,推导适用于顶板焊趾处裂纹最深点和表面点应力强度因子的新权函数,并将权函数计算的应力强度因子与有限元计算的应力强度因子进行对比。研究结果表明:顶板-纵肋双面焊顶板焊趾处残余应力沿板厚方向处于拉—压—拉状态,呈正弦函数分布;在二次应力分布下,权函数法与有限元法计算所得顶板焊趾处裂纹最深点应力强度因子最大相对误差为7.4%,表面点应力强度因子最大相对误差为4.1%;在焊接残余应力场下,权函数法与有限元法计算所得顶板焊趾处裂纹最深点应力强度因子最大相对误差为7.6%,表面点应力强度因子最大相对误差为8.6%;权函数法能有效计算钢桥面板-肋双面焊顶板焊趾处疲劳裂纹应力强度因子。  相似文献   

11.
针对钢箱梁横隔板与U肋连接焊缝疲劳细节,选取了三个局部试件作为研究对象,采用锤击装置对试件弧形缺口处焊缝的焊趾部位进行锤击处理,并采用疲劳试验机对处理后试件进行疲劳加载,对比分析试件的疲劳裂纹扩展情况、疲劳应力幅和疲劳强度的变化情况。同时,建立了局部锤击有限元模型,分析锤击部位的残余应力、塑性变形等,并结合疲劳试验结果,从疲劳裂纹萌生寿命、疲劳强度、锤击残余应力分布等角度,对锤击效果进行了评价。研究结果表明,锤击处理可有效提高横隔板与U肋连接焊缝的疲劳裂纹萌生寿命及疲劳强度;锤击处理可产生明显的塑性变形及残余应力,且两者均以焊趾为中心近似呈圆弧状分布;锤击深度为0.2mm时,锤击残余压应力沿板厚、垂直焊缝方向的分布范围均为3mm左右,从而改善构件的疲劳性能。  相似文献   

12.
为了研究不同加载制度下的钢框架梁柱节点焊缝低周疲劳性能,设计并完成了六个足尺全焊接梁柱节点焊缝低周疲劳试验,研究了节点焊缝的疲劳裂纹萌生及扩展规律,分析了循环幅值、加载历程对节点疲劳性能的影响,比较了在常幅、变幅及随机荷载作用过程中的疲劳损伤累积程度。结果表明:在三种加载制度下,梁翼缘焊接孔处焊趾最易萌生疲劳裂纹,最终断裂的路径均为焊接孔焊趾裂纹斜向发展,与翼缘焊缝端部裂纹汇合,造成全截面断裂;试件直接经历等幅大变形对节点的疲劳性能较为不利,经历由小变形到大变形的加载过程更能发挥耗能能力;常幅加载的幅值越大,节点累积损伤的速率越快,越早发生疲劳断裂.  相似文献   

13.
石鹏  程斌 《科学技术与工程》2016,16(5):104-109,115
盖板-U肋-横隔板三向连接节点是正交异性钢桥面板中最容易发生疲劳开裂的部位。采用ABAQUS软件建立了四跨连续正交异性钢桥面板结构的实体与板壳混合有限元模型。利用AASHTO标准疲劳车开展静力响应分析。发现最外侧U肋处的连接节点应力集中最为明显。在此基础上开展在单轮和横向双轮作用下各关键位置正应力的纵、横向影响线分析,并最终得到了后轴四轮同时作用的最不利荷载位置。进一步基于外推法对各疲劳易损区焊趾处的热点应力进行计算和分析,得到了相应的应力集中系数。结果表明:U肋外推区的应力分布比较符合线性外推准则,但横隔板外推区的应力呈现明显的非线性变化,建议采用二次外推方法。  相似文献   

14.
研究局部法应用于焊接接头疲劳评定的有效性和适应性.基于Taylor的临界距离理论,引入开裂部位的当量应力,它由有限元计算得到.针对钢质与铝质十字接头的疲劳数据进行分析,承载型十字接头的疲劳裂纹源于焊趾或焊根,由当量应力的大小所预测的开裂部位与实验结果相符.对疲劳裂纹源于焊趾部位的承载与非承载型十字接头,以焊趾部位的当量应力作为控制应力,此时疲劳数据的离散程度低,可望将焊趾开裂十字接头的疲劳强度以及S-N曲线统一表示.对疲劳裂纹产生于焊根的承载型十字接头,将焊根部位的当量应力作为控制应力,疲劳数据的分散度较大,与名义应力法相当,此时,局部法的有效性值得进一步考察.  相似文献   

15.
为研究正交异性钢桥面板U肋对接焊缝疲劳裂纹扩展寿命规律,建立正交异性钢桥面板U肋对接焊缝开裂模型,针对U肋对接焊缝开裂后沿表面、沿板厚两种情况分别进行裂纹扩展分析。通过计算裂纹尖端Ⅰ、Ⅱ型应力强度因子,分别获得裂纹尖端应力、扩展角度的变化规律,然后结合Paris定律,基于断裂力学理论对两种情况下的裂纹扩展疲劳寿命进行评估。研究结果表明:表面疲劳裂纹两种裂纹尖端的扩展角度大致相同,呈对称扩展;当裂纹长度小于2.75mm时,板厚疲劳裂纹处于稳定扩展阶段,疲劳裂纹修复应尽量选择该稳定扩展阶段;通过对比可知,表面疲劳裂纹的扩展寿命是板厚疲劳裂纹扩展寿命的16.7倍,应对板厚疲劳裂纹扩展予以重点关注。  相似文献   

16.
通过建立钢板梁桥节段有限元模型分析了主梁腹板与加劲肋连接焊缝部位的开裂特征,基于最不利车辆荷载位置分析了腹板间隙不同横向荷载位置下的正应力与剪应力特征,以及裂纹长度的变化对腹板面外变形的影响;通过对比不同裂纹长度时裂纹尖端和裂纹最深点的应力强度因子值,分析了裂纹长度对裂纹前缘的受力特征以及扩展速率的影响.研究结果表明:...  相似文献   

17.
为了研究钢桥面顶板与U肋焊缝处多疲劳裂纹间的耦合扩展效应,结合线弹性断裂力学理论与ABAQUS-FRANC3D交互技术,建立了钢桥面顶板-U肋焊缝处共线双疲劳裂纹的数值分析模型,对比分析了单裂纹和共线双裂纹的裂尖应力强度因子,揭示了裂纹间距、干扰裂纹尺寸对基础裂纹扩展特性的影响规律,并通过足尺节段试验对理论模拟进行了验证. 分析结果表明:共线裂纹相较于单裂纹的应力强化效应不可忽略,而相同尺寸双裂纹代表了多裂纹扩展的最不利情况,且当共线长裂纹的间距与裂纹长度比值s/c小于0.5时,裂纹交互影响因子及其扩展速率受耦合效应影响显著.  相似文献   

18.
为了研究U肋对接焊缝多轴疲劳特征,建立了钢桥面板节段模型与对接焊缝子模型,得出不同工况下对接焊缝上各关注点的应力状态。通过平板模型的单、多轴疲劳应力对比,提出了采用绝对值最大的主应力与主要应力分量的偏差作为评判多轴疲劳的依据。然后对U肋对接焊缝进行了受力分析与变形分析,并对比了影响该细节多轴疲劳的主要因素。研究结果表明:纵桥向正应力、截面弯曲剪应力和顶板厚度方向正应力的量值较大,是引起对接焊缝多轴疲劳开裂的重要原因;U肋弯曲应力占膜应力的比例很小,对接焊缝多轴疲劳开裂主要由面内变形引起;多轴疲劳效应随荷载中心线偏离U肋对称轴越发显著,单轴疲劳仅为荷载中心线与U肋对称轴重合时,在U肋对称中心点产生的瞬时效应。  相似文献   

19.
组合桥面板U肋对接焊缝疲劳破坏及修复方法试验   总被引:1,自引:1,他引:0  
为了研究弯折U形肋组合桥面板的疲劳性能以及疲劳开裂后的修补方法,对一个带连续弯折U形肋的组合桥面板试件进行了前后两次疲劳试验研究.首先对初始采用无衬垫对接焊缝的试件进行疲劳加载直到焊缝开裂;然后在开裂处采用带衬垫的对接焊缝加固,再次进行疲劳加载直到破坏.研究了组合桥面板疲劳破坏形态、开裂处疲劳强度评定、疲劳裂缝修复方法及修复后的疲劳性能.试验结果表明:在反复荷载作用下无衬垫单面焊的对接焊缝是正交异性组合桥面板的薄弱处,首先发生疲劳裂纹,采用带衬垫的熔透对接焊缝对开裂处进行修补,能起到较好的补强效果.  相似文献   

20.
采用数值模拟的方法,建立不同疲劳修复方法的分析模型,针对止裂孔法和钢板补强法的疲劳修复效果进行了探究.通过提取两侧横隔板-U肋连接焊缝焊趾部位不同路径的Mises应力进行纵向对比,得到了该部位在维护前后应力的变化规律.研究结果表明:裂纹存在时,另一侧横隔板-U肋连接焊缝焊趾处的应力水平有明显提高;止裂孔法虽可以缓解裂纹尖端应力集中现象,但会增大另一侧该连接焊缝焊趾处的应力;钢板补强法可大幅降低裂纹尖端及另一侧连接焊缝焊趾处的应力水平,但被补强一侧钢板下缘会出现显著的应力集中现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号