首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
几株反硝化聚磷菌的筛选及其生理生化特性的鉴定   总被引:4,自引:0,他引:4  
为研究反硝化聚磷菌的生物学特性,通过吸磷试验、硝酸盐还原产气试验及异染颗粒和PHB颗粒染色辅助检验,从苏州某食品厂排放的废水中分离筛选出3株反硝化聚磷菌B4、B5和B6。经鉴定,分别属于沙雷菌菌属(Serrat/a)、拉恩菌菌属(Rahnella aquatilis)和不动杆菌菌属(Acinetobacter)。测定了这3株菌的生长曲线,研究了温度和pH值对这3株菌株的生长及脱氮除磷效能的影响。结果表明,B4、B5和B6菌株的生长和脱氮除磷反应最适温度均在30℃左右;在室温条件下,B4、B5和B6生长的最适pH为6.5~8.5;3株菌反硝化脱氮除磷反应的最佳pH值均为中性偏碱。  相似文献   

2.
采用具有磷酸盐还原功能的菌株,对模拟的食品发酵废水进行厌氧除磷工艺研究。通过向厌氧反应器投加前期筛选得到的磷酸盐还原菌进行污泥驯化、正交试验和单因素实验,确定食品发酵废水厌氧除磷工艺的最佳工艺条件。研究结果表明:经过12个周期的驯化,使投加菌株的污泥具有良好的生化和除磷性能,反应器出水CODCr和总磷质量浓度分别为319.60mg/L和13.58mg/L,相应去除率分别为69.43%和20.95%。厌氧除磷工艺最佳工艺条件为培养温度30℃、pH值为7、氮源为蛋白胨+NH4Cl+NaNO3,总磷质量浓度为17.5mg/L,总磷去除率可达37.96%,产生的PH3的磷含量占总磷去除量的24.61%。  相似文献   

3.
筛选出一株能够高效除磷的耐盐菌株HG-1。通过个体形态、菌落特征的观察和16S rRNA基因的序列分析, 初步鉴定为盐弧菌属(Salinivibrio sp.)。对菌株HG-1的耐盐性能及其在不同盐度下对磷酸盐的去除效果进行考察, 结果表明菌株对盐度的耐受范围为1%~13%, 最适盐度为3%。进一步的单因素和正交实验表 明, 4个环境因素对菌株HG-1磷酸盐去除率影响的强弱为: pH>碳氮比>温度>接种量, 最优的除磷条件为pH 6.5~7.0, 温度30℃, 接种量10%, 碳氮比9, 在该条件下菌株在24小时内对磷酸盐的去除率可达100%。 将该菌株应用于高盐废水的处理, 可实现磷酸盐的有效去除, 具有良好的实际应用价值, 为高盐条件下生物除磷难题的解决提供了一条新的途径。  相似文献   

4.
为给工程化应用提供一定的理论支持和依据,研究了反硝化聚磷菌的脱氮除磷效率和适宜的生长环境。以青岛市某污水处理厂成熟活性污泥为菌种来源,通过筛选、培养、形态分析、分子生物学鉴定等方法,分析了该菌生长规律与其脱氮除磷率的关系,并通过改变温度、pH和碳源等生长条件研究对其脱氮除磷率的影响。成功分离并鉴定了一株脱氮除磷率高的反硝化聚磷菌株,该菌株是假单胞菌属(Pseudomonas sp.),脱氮除磷效率较高,其脱氮除磷率超过90%。该菌株在温度30℃,碱性环境,碳源为柠檬酸钠条件下,能够较好的生长。  相似文献   

5.
筛选出一株能够高效除磷的耐盐菌株HG-1。通过个体形态、菌落特征的观察和16S rRNA基因的序列分析,初步鉴定为盐弧菌属(Salinivibrio sp.)。对菌株HG-1的耐盐性能及其在不同盐度下对磷酸盐的去除效果进行考察,结果表明菌株对盐度的耐受范围为1%~13%,最适盐度为3%。进一步的单因素和正交实验表明,4个环境因素对菌株HG-1磷酸盐去除率影响的强弱为:pH>碳氮比>温度>接种量,最优的除磷条件为pH6.5~7.0,温度30℃,接种量10%,碳氮比9,在该条件下菌株在24小时内对磷酸盐的去除率可达100%。将该菌株应用于高盐废水的处理,可实现磷酸盐的有效去除,具有良好的实际应用价值,为高盐条件下生物除磷难题的解决提供了一条新的途径。  相似文献   

6.
从活性污泥中筛选出高效脱氮除磷菌,并进行分类鉴定,同时研究了不同pH和接种量对生长的影响.通过聚磷菌的富集培养、缺磷和富磷培养的筛选、PHB和异染颗粒染色实验进行鉴定,并通过除磷除氮实验、形态学和生理生化实验进行初步研究,通过16S rRNA进行分子鉴定.筛选得到一株高效脱氮除磷菌.该菌株在pH5~10之间均能正常生长,最佳生长pH为7.接种量在10%时生长效果最好,其中对氮磷的去除率分别达78.3%、87.8%.该菌株可以同时对氮和磷有较好的去除效果,通过形态学观察、生理生化试验和16S rRNA基因序列分析,构建系统发育树,初步鉴定为肠杆菌属.  相似文献   

7.
从工业废水处理系统中分离出一株以喹啉为唯一碳源和氮源的假单胞菌QG6 (Pseudomonas sp. QG6), 用于喹啉降解同步除磷, 并采用正交实验设计优化出最佳条件。菌株QG6具有较好的喹啉降解能力, 12小时内能将96~144 mg/L的喹啉完全降解。菌株QG6在好氧条件下具有除磷能力, 不存在喹啉的条件下, 以有机碳为碳源、无机氮为氮源、初始磷酸盐浓度为8.69~19.41 mg/L时, 20小时内能去除磷酸盐86%以上。初始喹啉浓度为144 mg/L (其自身的碳氮比约7:1)、磷酸盐浓度为10 mg/L时, 若不外加有机碳源, 喹啉在12小时内被降解完全, 同一时段内除磷率仅为33%。外加有机碳源至碳氮比20:1且其他条件都相同时, 喹啉降解 效果不受影响, 且同步除磷率提高到 86%。正交实验表明, 外加碳源条件下喹啉降解的最佳条件按影响大小排列为: 初始喹啉浓度200 mg/L, 温度25°C, pH 8, 摇床转速120 rpm; 除磷最佳条件为: 摇床转速100 rpm, 温度为25°C, 初始喹啉浓度150 mg/L, pH 9。  相似文献   

8.
对菌株YH12进行形态学和生理生化特性鉴定.菌体呈杆状,革兰氏染色阳性,产芽孢,菌落为乳白色,光滑,湿润,不透明.16S rRNA基因测序结果表明,菌株YH12与解淀粉芽孢杆菌(Bacillus amyloliquefaciens)同源性达99.01%.脱氮除磷特性研究表明,YH12在丁二酸钠为碳源、C/N7、温度30℃、pH7时脱氮除磷效果最佳,培养24 h时除磷率为75.12%,脱氮率为65%.  相似文献   

9.
目的研究反硝化聚磷菌在同一反应条件下的吸磷能力和生长特性,为污水脱氮除磷微生物学的研究提供理论依据.方法通过反硝化聚磷菌的吸磷试验,确定各菌株的含磷量及吸磷速率;通过拮抗试验构建复合菌群,采用浊度法绘制各菌群的生长曲线,进一步研究微生物的种群特性及对环境的适应能力.结果韦荣氏菌属在缺氧培养3 h时,磷质量浓度出现最大降幅,出水PO3-4-P质量浓度均低于2.00 mg/L.菌株F8适应新环境的能力最强.对数期时,菌株F3、F9、F13的生长速率最小.菌株F5的稳定期持续时间比较短,处于144~168 h;F11持续时间最长,处于144~216 h.菌株F16对数期最短,最先进入稳定期,且稳定期持续时间最长.各种复配菌株处于稳定期时菌体数量从小到大依次为F9、F8、F3、F10、F7、F2、F4、F14、F16、F6、F11、F1、F5、F12、F13、F15.结论反硝化聚磷菌单菌吸磷速率与其菌株整体吸磷量大小无关,复合菌株较强的适应能力使其调整期比任何一株单菌的时间都短.  相似文献   

10.
在磷技强化生物除术的基础上,对反硝化聚磷菌和反硝化聚糖菌的反硝化能力对生物除磷的影响进行了总结分析。在强化生物除磷系统中,缺氧条件下存在反硝化聚磷菌和反硝化聚糖菌,会对聚磷菌富集和系统除磷产生影响,同时研究发现碳源种类、电子受体类型、进水C/N、污泥龄和pH值是反硝化除磷的影响因素。乙酸钠为理想碳源、以NO~-_3—N为理想电子受体、C/N值的理想比值为4~5、控制污泥龄最佳范围是10~12d、pH值的最佳控制范围是7~8,反硝化除磷效果好。  相似文献   

11.
通过探索性实验,确定了三种耐冷菌培养基,分别用于培养耐冷细菌、耐冷放线菌和耐冷霉菌.培养出的耐冷菌株在6℃条件下被分离纯化,然后通过一系列实验分别鉴定它们的生理特性并检验它们的脱氮能力,并测定pH值、温度对脱氮效果的影响规律.实验结果显示pH值为7~8时,各菌株生长得最好;生物荧光层析光谱实验发现三种菌株都在15℃左右活性最大,0℃以下仍有一定的活性,高于35℃时,基本失去正常的代谢能力.当实验菌液投加量为5.0%,实验温度为6℃,三种耐冷菌对氨氮的去除率分别为57.7%、59.0%及58.7%,相同条件下,投加混合菌种可使氨氮的去除率提高到67.2%.  相似文献   

12.
利用酸洗废液改性粉煤灰进行了抗生素废水除磷的试验研究,考察了粉煤灰改性时固液比、改性粉煤灰投加量、溶液pH值等因素对除磷效果的影响。试验结果表明:粉煤灰改性时固液比对其处理效果影响不大,当溶液pH值为4~10,改性粉煤灰投加量为2.5g/L时,处理后水中磷酸盐浓度为0.1~0.26mg/L,磷酸盐的去除率为98.82%~99.59%。并对改性粉煤灰的除磷机理进行了初步探讨。  相似文献   

13.
采用简单的煅烧方法处理火山岩,用测量吸光度的方法测量火山岩对水中低浓度正磷酸根离子的去除率,比较煅烧温度和投放剂量对火山岩除磷性能的影响,得出所选用火山岩的最佳处理温度为1100℃,最佳投放剂量为5.0-7.5g/L’最佳作用时间为48h左右.最后还对火山岩的除磷机制作了初步的探讨.  相似文献   

14.
本文对粉煤灰富铁微珠对磷的去除效果进行研究,并寻找除磷的最优条件。试验结果表明,得到在pH为10,投加量2.5%,搅拌时间;35min,搅拌强度在10r/s,温度取室温(29℃),磷的去除率。  相似文献   

15.
近年在化学除磷污水厂中出现了污泥释磷聚磷能力下降甚至消失的现象,本文针对这一问题,从长期运行化学除磷的某污水处理厂倒置A/A/O工艺中分离鉴定聚磷菌,确定化学除磷药剂长期胁迫下聚磷菌的优势菌种,以期为化学除磷污水厂的生物强化除磷提供菌种资源.采用平板稀释涂布法,结合蓝白斑实验以及poly-P和PHB染色实验,筛选出三株聚磷菌.通过好氧吸磷和厌氧释磷实验,发现菌株P2和P19有较强的吸磷和释磷能力.经过16S RNA测序和Genbank比对,最终确定P2与植生拉乌尔菌(Raoultella planticola)的同源性为98%,P19与克雷伯氏杆菌(Klebsiella pneumoniae)的同源性为98%.  相似文献   

16.
富磷上清液铁接触除磷效果受多种因素影响,且各因素间关系复杂,单一的数学模型难于准确模拟.建立了灰色BP人工神经网络组合预测模型,该模型结合了进水总磷浓度、曝气强度、水力停留时间、pH值、水温等5个主要影响因素,可准确预测不同工况下富磷上清液铁接触除磷效果.通过组合预测模型计算可知:随着进水总磷浓度和pH值的升高,总磷去除率随之下降;而随着曝气强度的增大和水力停留时间的延长,总磷去除率随之升高;随着水温的升高,总磷去除率有波动,水温为27 ℃时,总磷去除率最大.  相似文献   

17.
造纸白泥除磷特性研究   总被引:1,自引:0,他引:1  
为了降低水体富营养化,以造纸白泥作为除磷剂,考察了初始溶液浓度、时间、温度、pH和白泥投加量五种因素对磷去除率的影响。结果表明,白泥是一种有效的除磷剂,初始溶液浓度越高,白泥对磷的去除量越大;在温度为25℃,白泥用量每100mL为8g,pH为8-10的实验条件下,磷的去除率可达75%以上。  相似文献   

18.
目的研究反硝化聚磷菌的富集及菌株反硝化除磷特性,丰富反硝化聚磷菌的菌种,为今后反硝化脱氮除磷技术的实际应用提供参考.方法利用活性污泥为基质快速富集以NO_3~-作为电子受体的反硝化聚磷菌,并用专性培养基于稳定运行的A~2SBR反应器中分离得到2株高效反硝化聚磷菌N4. 3和N4. 1,对两株菌的反硝化除磷效能进行研究.结果在两阶段驯化条件下,共历时36天反硝化聚磷菌富集成功,反硝化除磷系统出水COD、TP和NO_3~--N的质量浓度分别为24. 52 mg/L、0. 37mg/L和2. 64 mg/L; N4. 3和N4. 1均具有PHB及异染颗粒,且革兰氏染色均呈阳性; N4. 3和N4. 1硝态氮去除率分别为95. 83%、96. 30%,总磷去除率分别为88. 34%、91. 42%.结论 A~2SBR系统中反硝化聚磷菌富集效果较好,并且分离出两株具有较高的反硝化吸磷能力的菌株.  相似文献   

19.
利用(+/-)γ-内酰胺做为唯一碳源从土壤中分离出一株能产生(+)γ-内酰胺酶水解拆分(+/-)γ-内酰胺的菌株.鉴定菌株为Pantoea ananatis Y22.进一步优化了P.ananatis Y22发酵产γ-内酰胺酶的发酵条件和生物转化条件.发现棉子糖为最佳碳源,蛋白胨为最佳氮源;Y22在pH值4~10范围内生长良好,最佳发酵pH值为7,最佳生物转化pH值为8.确定最佳发酵温度为30℃,最佳生物转化温度为30℃.  相似文献   

20.
基于短程硝化的同步脱氮除磷影响因素研究   总被引:1,自引:1,他引:0  
对以亚硝态氮为电子受体的同步脱氮除磷技术的影响因素进行了研究,分别考察了亚硝态氮最大抑制浓度、碳氮比、碳磷比、pH值等因素对氮和磷去除效果的影响,结果表明,亚硝态氮的最大抑制浓度为150 mg/L,COD∶NO2-N∶P最佳质量比大致为100∶7.69∶2,最佳pH值为7.39±0.2,此时磷的去除率接近100%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号