首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 324 毫秒
1.
用差示扫描量热法(DSC)研究了自制柔性不饱和聚酯/甲基丙烯酸甲酯树脂(FUP/MMA)和柔性不饱和聚酯/甲基丙烯酸甲酯/T-60改性粉煤灰(FUP/MMA/CFA)复合体系的固化过程.利用Kissinger法、Ozawa法求出FUP/MMA和FUP/MMA/CFA两体系固化反应的表观活化能分别为81.578 kJ·mol-1和77.231 kJ·mol-1;用ASTM E698-79标准方法求得两体系固化反应的指前因子lnA分别为20.40 s-1和19.15 s-1;结合Crane方程得到两体系的反应级数n分别为0.9377和0.9359;最终确定了固化反应的动力学方程.用T-β外推法确定了凝胶温度、固化温度和后固化温度等固化工艺温度.  相似文献   

2.
聚氨酯改性TDE-85/MeTHPA体系的固化反应   总被引:1,自引:0,他引:1  
采用聚氨酯预聚体、扩链剂和交联剂对TDE-85/甲基四氢邻苯二甲酸酐(MeTHPA)树脂进行改性,通过红外光谱和示差扫描量热法(DSC)分析,探讨聚氨酯(PU)改性TDE-85/MeTHPA树脂体系固化反应。研究表明:固化反应的表观活化能由TDE-85/MeTHPA树脂体系的83.14 kJ/mol降至PU改性TDE-85/MeTHPA树脂体系的67.91 kJ/mol。确定的PU改性TDE-85/MeTHPA树脂体系合适的固化工艺条件为:120℃,2 h 140℃,2 h 160℃,2 h。在该固化工艺制度条件下,PU改性TDE-85/MeTHPA体系固化反应完全,能满足固化工艺要求。  相似文献   

3.
采用非等温差示扫描量热法测试了不同升温速率下氰酸酯/八(γ-氯丙基)倍半硅氧烷(POSS)杂化树脂的固化过程。运用Kissinger法和Flynn-Wall-Ozawa法对杂化树脂固化反应活化能进行了计算,两种不同模型计算的活化能分别为88.57kJ/mol和89.01kJ/mol。含POSS的杂化树脂固化反应级数n=0.904,频率因子A=4.064×107S-1。  相似文献   

4.
不饱和聚酯树脂/CaCO3体系固化动力学非等温DSC研究   总被引:3,自引:0,他引:3  
采用示差扫描量热(DSC)法对不饱和聚酯树脂(UP树脂)/CaCO3复合体系的固化过程进行研究,得出不同升温速率下UP树脂/CaCO3复合体系固化过程中的DSC曲线,并由动态DSC曲线求出固化反应的活化能、固化反应级数及动力学方程中的指前因子等参数,建立了复合体系固化反应动力学的数学模型。  相似文献   

5.
作者采用DSC和TG方法,研究了树脂与六次甲基四胺的等温固化反应及其动力学,用FTIR方法研究了固化前后试样的结构变化。DSC结果表明,温度从130℃到170℃,(dα/dt)_(α-0.5)值逐渐增加,使用铝样品皿和大容量不锈钢密封皿,E值分别为101.2和84.9 kJ/mol。TG结果表明,最大固化程度的温度在200℃左右,固化反应速度的变化规律同上。FTIR的研究为分析新型热塑性钼酚醛树脂的固化机理提供了依据。  相似文献   

6.
聚(间二乙炔基苯-甲基氢硅烷)(PSA)和含乙炔基苯并噁嗪树脂(A-PBZ)在热作用下均能够聚合形成交联网状结构。研究了PSA/A-PBZ共混树脂(SB)的固化行为。通过红外光谱(FT-IR)、旋转流变仪和差示扫描量热仪(DSC)研究了PSA/A-PBZ质量比为5:2时共混树脂(SB-2)的固化特性,利用动态DSC分析,根据Kissinger方法和Ozawa方法计算得出SB-2共混树脂固化反应的表观活化能分别为108.4 kJ/mol、111.1 kJ/mol,反应级数分别为0.93和0.95,固化反应遵循一级反应机理。同时还对SB共混树脂体系的耐热性能进行了探究,热重分析(TGA)结果表明:在氮气和空气氛围下,SB共混树脂固化物失重5%的温度(Td5)和1 000℃时的质量保留率均随着A-PBZ树脂加入量的增加而减小,但SB共混树脂仍然表现出优异的耐热性能。  相似文献   

7.
苯酚双环戊二烯环氧树脂的合成与固化性能研究   总被引:2,自引:0,他引:2  
以苯酚和双环戊二烯为原料,通过Friedel-Crafts反应,合成了双环戊二烯酚树脂(DPR)。用环氧氯丙烷对该树脂进行环氧化,还制得了含有双环戊二烯结构的环氧树脂(DER)。系统地考察了合成反应的条件,所得环氧树脂的最大环氧值为0.31~0.35,有机氯含量小于0.02mol/100g。用红外光谱考察了以甲基六氢苯酐(MeHHPA)为固化剂时该树脂在180 ℃时的固化速度,固化3.5 h时, 环氧开环的转化率大于92%。DSC的分析表明DER与双酚A环氧树脂E51混合(质量比为1:1),固化树脂的玻璃化转变温度Tg比E51固化树脂的玻璃化转变温度高15 ℃。  相似文献   

8.
UP树脂室温固化体系的影响因素及其进展概述   总被引:1,自引:0,他引:1  
介绍了不饱和聚脂树脂(UP)室温固化体系中,引发剂、促进剂的种类与用量对固化性能的影响,并介绍了近几年国内不饱和聚酯树脂室温固化体系的进展状况.  相似文献   

9.
采用DSC等温法研究了线型酚醛树脂/低密度聚乙烯共混体系固化过程动力学。并采用自催化形成的动力学方程进行数学处理,得到了相应的动力学参数。结果表明,不同共混比的体系具有相近的固化反应表观活化能(约110~125kJ/mol)和相近的反应级数m,n(约0.5~0.6级)。聚乙烯组分的存在影响了固化过程的表观频率因子。  相似文献   

10.
本文研究了4,4′-二氨基二苯砜四缩水甘油基环氧树脂(AS-70树脂)与4,4′-二氨基二苯甲烷的固化反应。采用DSC法测定了固化反应热效应和反应速率,求得固化反应活化能为51.5KJ/mol;用TGA测定了浇铸体的热分解温度,表明AS-T70树脂的耐热性较好;用FT-IR跟踪固化反应过程中环氧基团特征吸收峰(906cm~(-1))的变化,求得的固化反应速率与DSC法测定的结果较吻合。  相似文献   

11.
以4-氨基苯氧邻苯二甲腈(BZN)、间氨基苯乙炔(APA)和多聚甲醛为原料制备了含氰基和乙炔基的苯并噁嗪树脂(BZ-BPA)。利用差示扫描量热法(DSC)、傅里叶变换红外光谱法(F T-IR)、热重分析法(TGA)分析了BZ-BPA的固化行为,得到:BZ-BPA在固化反应过程中存在两个放热峰(225℃和274℃);在氮气氛围下,BZ-BPA固化物热失重5%的温度(T d5)为502.6℃,800℃时质量残留率为79.8%;在空气氛围下,T d5为506.0℃,800℃时质量残留率为29.6%。采用Kissinger法计算得到两个固化反应的表观活化能(E):E1=228.31 kJ/mol,E2=87.97 kJ/mol;由Ozawa法计算得到:E1=225.98 kJ/mol,E2=92.26 kJ/mol;固化反应接近一级反应。考察了石英纤维增强的BZ-BPA复合材料(QF/BZ-BPA)的力学性能和耐热性能,结果显示:QF/BZ-BPA的玻璃化转变温度(Tg)为476℃;在常温下其弯曲强度为764.2 MPa,层间剪切强度为57.3 MPa;在400℃热处理2 h后,其弯曲强度为614.5 MPa,层间剪切强度为38.1 MPa;400℃热处理10 h后,其质量损失仅为2.4%。以上结果表明BZ-BPA复合材料具有优异的力学性能和耐热性能。  相似文献   

12.
以4-氨基苯氧邻苯二甲腈(BZN)、间氨基苯乙炔(APA)和多聚甲醛为原料制备了含氰基和乙炔基的苯并噁嗪树脂(BZ-BPA)。利用差示扫描量热法(DSC)、傅里叶变换红外光谱法(F T-IR)、热重分析法(TGA)分析了BZ-BPA的固化行为,得到:BZ-BPA在固化反应过程中存在两个放热峰(225℃和274℃);在氮气氛围下,BZ-BPA固化物热失重5%的温度(T d5)为502.6℃,800℃时质量残留率为79.8%;在空气氛围下,T d5为506.0℃,800℃时质量残留率为29.6%。采用Kissinger法计算得到两个固化反应的表观活化能(E):E1=228.31 kJ/mol,E2=87.97 kJ/mol;由Ozawa法计算得到:E1=225.98 kJ/mol,E2=92.26 kJ/mol;固化反应接近一级反应。考察了石英纤维增强的BZ-BPA复合材料(QF/BZ-BPA)的力学性能和耐热性能,结果显示:QF/BZ-BPA的玻璃化转变温度(Tg)为476℃;在常温下其弯曲强度为764.2 MPa,层间剪切强度为57.3 MPa;在400℃热处理2 h后,其弯曲强度为614.5 MPa,层间剪切强度为38.1 MPa;400℃热处理10 h后,其质量损失仅为2.4%。以上结果表明BZ-BPA复合材料具有优异的力学性能和耐热性能。  相似文献   

13.
以等温DSC法研究了在60、65、70和75℃下,环氧树脂E-44和树状大分子聚酰胺-胺(PAMAM)体系的固化反应动力学过程,结果表明该固化反应符合自催化反应模型. 通过Kamal方程计算出各固化动力学参数,其中反应总级数m+n在2.13~2.21之间,反应活化能E1和E2分别为52.65 、65.47 kJ/mol. 由于固化后期受扩散控制,且温度越低扩散控制越显著,引入扩散因子f(α)对Kamal模型进行修正,所得的修正模型能更好地描述固化全过程.  相似文献   

14.
研究了一缩二乙二醇双烯丙基碳酸酯(DADC)在引发剂存在下的预聚合和固化反应,测定了不同预聚液的粘度、折射率与反应时间、温度、引发剂类型及用量之间的关系,求得了不同条件下预聚合反应的回归方程和速率常数。用DSC和FTIR分析固化反应过程,确定了固化反应的工艺条件,并制备了复合材料和人造大理石。结果表明:反应温度和引发剂用量是影响预聚合的重要因素,预聚合活化能为133kJ/mo1,固化反应活化能为93.6kJ/mo1,DADC树脂及其复合材料具有良好的综合性能。  相似文献   

15.
烯丙基酚醛树脂的固化动力学   总被引:1,自引:0,他引:1  
利用差示扫描量热法分析了烯丙基酚醛树脂在不同升温速率下的固化行为,用Kissinger法和KAS(Kissinger-Akahira-Sunose)法对获得的动力学数据进行处理,得到了固化反应动力学参数,并建立了烯丙基酚醛树脂的固化动力学模型.结果表明:与纯酚醛树脂相比,烯丙基酚醛树脂固化温度较高,反应级数更接近于1,固化反应所需的平均表观活化能较低,为111.45kJ/mol;在整个固化过程中,烯丙基酚醛树脂的活化能较为恒定,随温度变化不大;烯丙基酚醛树脂固化动力学模型为研究该体系固化工艺参数提供了理论依据.  相似文献   

16.
采用DSC方法研究了含磷芳胺/E-51环氧树脂体系的固化反应,测定了反应表现活化能。结果表明,含磷芳胺固化剂的反应活性高于对应的芳胺固化剂,与脂肪胺固化剂的反应活性相近,含磷芳胺/E-51体系的固化反应活化能为69.50 ̄77.75kJ/mol。此外,DSC实验表明含磷芳胺对芳胺DDM/E-51体系有促进固化作用。  相似文献   

17.
环氧树脂/粘土纳米复合材料的固化反应动力学   总被引:1,自引:1,他引:0  
用十六烷基三甲基溴化铵直接处理钙基蒙脱土(MMT), 使其层间距达到2.21 nm. 采用非等温差示扫描量热(DSC)法研究环氧树脂/粘土体系的固化反应动力学, 并用Kissinger方法求得其表观活化能ΔE=41.03 kJ/mol, 根据Crane理论计算得到反应级数为0.85, 确定了使用4,4′ 二氨基二苯醚二苯酮(BADK)作为固化剂的固化反应条件, 最后采用非等温DSC法研究了环氧树脂/粘土纳米复合材料的热性能. 结果表明, 纳米复合材料具有较高的玻璃化转变温度.  相似文献   

18.
利用 DSC研究了苯并口恶嗪二苯醚树脂中间体在不同催化剂和不同升温速率下的固化反应 ,计算了在热固化条件下的动力学参数 .结果表明 :催化剂、升温速率对起始固化温度 ,固化焓影响很大 ,在热固化条件下 ,固化反应的活化能为 1 1 9.6k J.mol-1 ,反应级数接近于 1 .  相似文献   

19.
采用柱分离法对液态双酚A环氧树脂E51进行分离,得到分子量为340的单组分环氧树脂,并对其进行了IR、NMR和ESI-MS表征。研究了E51环氧树脂及单组分环氧树脂与DDS的固化反应动力学,采用DSC测定了E51环氧树脂和单组分环氧树脂与DDS固化体系的固化反应表观活化能,分别为134.85和152.15kJ/mol。通过对2种体系固化产物的Tg分析,结果表明E51/DDS固化产物的Tg比单组分环氧树脂/DDS固化产物的Tg低约10℃,分别为202.2和212.4℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号