首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The large-scale upper circulations and meridional overturning in the upper layer of the South China Sea (SCS) with idealized bottom topography in winter and summer are investigated. Simulations with the GFDL general circulation model are carried out under the conditions of open or enclosed boundary regarding transport in the Luzon Strait. The intrusion area of Kuroshio, its impact on the meridional overturning in the upper layer of the SCS and seasonal characteristic of this impact are explored, respectively. The model is forced by climatological wind stress and relaxed to monthly mean climatological temperature and salinity. The resultant meridional overturning is non-enclosed, wit htransporting from north to south in the surface and returning to north at the depth of about 500 m in winter, about 200 m in summer, with amplitudes of 10^5 m^3/s. It shows the transporting path of intermediate water of the SCS and offers an idealized reference for further study on dynamics of wind-driven and thermohaline circulation of the SCS.  相似文献   

2.
Seasonal features of the Sverdrup circulation in the South China Sea   总被引:7,自引:0,他引:7  
Based on the Sverdrup relation, using climatological wind stress data, the basin scale Sverdrup transport in the South China Sea(SCS) is calculated and the basic seasonal features of the Sverdrup circulation are obtained. A comparison of these calculated features with observations proves that the wind-driven circulation in the SCS is very important for the formation of the SCS upper oceanic circulation in winter, summer and fall. It is shown that the non-uniform sea surface wind is one of the causes to form multi circulation centers in the basin of the SCS. The westward current at 18°N is caused by the local wind, which is stronger in fall and winter. The seasonal variation of circulation in the southern SCS is much more remarkable than that in the north. The wind in spring is helpful to the seasonal reversal of the circulation in the central SCS. The northward transport of the cyclonic circulation reaches the maximum in fall.  相似文献   

3.
This study is a preliminary analysis of the South China Sea (SCS) deep circulations using eight quasi-global high-resolution ocean model outputs. The goal is to assess models’ ability to simulate these deep circulations. The analysis reveals that models’ deep temperatures are colder than the observations in the World Ocean Atlas, while most models’ deep salinity values are higher than the observations, indicating models’ deep water is generally colder and saltier than the reality. Moreover, there are long-term trends in both temperature and salinity simulations. The Luzon Strait transport below 1500 m is 0.36 Sv when averaged for all models, smaller compared with the observation, which is about 2.5 Sv. Four assimilated models and one unassimilated (OCCAM) display that the Luzon deep-layer overflow reaches its minimum in spring and its maximum in winter. The vertically integrated streamfunctions below 2400 m from these models show a deep cyclonic circulation in the SCS on a large scale, but the pattern is different from the diagnostic streamfunction from the U.S Navy Generalized Digital Environment Model (GDEM-Version 3.0, GDEMv3). The meridional overturning structure above 1000 m is similar in all models, but the spatial distribution and intensity below 1500 m are quite different from model to model. Moreover, the meridional overturning below 2400 m in these models is weaker than that of the GDEMv3, which indicates a deep vertical mixing process in these models is biased weak. Based on the above evaluation, this paper discusses the impacts of T/S initial value, topography, and mixing scheme on the SCS deep circulations, which may provide a reference for future model improvement.  相似文献   

4.
Using Morlet wavelet transform we investi- gated the intraseasonal variability of the subsurface tem- perature in the SCS by analyzing ATLAS mooring data ob- tained during the South China Sea Monsoon Experiment (SCSMEX). It is found for the first time that subsurface temperature in the SCS exists intraseasonal variability, par ticularly in winter. The strongest intraseasonal variability ranges from 50 to 100 m with its maximum amplitude about 1.0-2.0℃. The subsurface temperature intraseasonal vari- ability in the SCS is primarily induced by local wind stress curl via adjusting the vertical displacement of thermocline. It reveals the important characteristic of intraseasonal varia- tions in the SCS upper ocean vertically.  相似文献   

5.
河口形状对河口环流和盐水入侵的影响   总被引:5,自引:1,他引:5  
作者应用改进的ECOM模式,通过设计一个平直和喇叭形理想河口,研究河口形状对环流和盐水入侵影响。盐水入侵产生盐度锋面,在锋面处底层存在着向陆的密度流,为保持断面上质量连续,上层的流速明显增大;表层流有偏北的分量,底层流有向南分量,表明有横向环流存在。盐水入侵产生的盐度锋面在水平面上向西北倾斜,北岸盐水入侵比那南岸大,在垂直上向上游倾斜,底层盐水入侵比表层大,高盐水位于北岸的下层。张潮流、向陆的密度流和混合是产生盐水入侵的动力因子。科氏力使涨潮流向北岸偏转,向陆的密度流存在于底层,这种动力机制导致了盐度分布的不对称。盐度横向分布产生的斜压压强梯度力指向南岸,并随水深增加,导致底层流向南岸流动;因要满足质量守衡,在北岸因底层流的辐散产生下降流、水位下降,而在南岸因底层流的辐合产生上升流、水位抬升,水位的横向分布又导致表层流向北,想成一垂向横向环流。喇叭形河口因口门内河口变宽,造成流的幅散,向海的流速减少和产生上升流,底层向陆的密度流向西流动的距离减少,口门处盐度增加,但盐水向西入侵的距离减少;河口喇叭扣南岸下层也出现明显的高盐水;垂直混合增强,盐度垂向趋于均匀。  相似文献   

6.
Schmittner A 《Nature》2005,434(7033):628-633
Reorganizations of the Atlantic meridional overturning circulation were associated with large and abrupt climatic changes in the North Atlantic region during the last glacial period. Projections with climate models suggest that similar reorganizations may also occur in response to anthropogenic global warming. Here I use ensemble simulations with a coupled climate-ecosystem model of intermediate complexity to investigate the possible consequences of such disturbances to the marine ecosystem. In the simulations, a disruption of the Atlantic meridional overturning circulation leads to a collapse of the North Atlantic plankton stocks to less than half of their initial biomass, owing to rapid shoaling of winter mixed layers and their associated separation from the deep ocean nutrient reservoir. Globally integrated export production declines by more than 20 per cent owing to reduced upwelling of nutrient-rich deep water and gradual depletion of upper ocean nutrient concentrations. These model results are consistent with the available high-resolution palaeorecord, and suggest that global ocean productivity is sensitive to changes in the Atlantic meridional overturning circulation.  相似文献   

7.
The variations of surface air temperature(SAT)over the Arctic are closely related to global climate change.Based on reanalysis datasets and a newly defined Aleutian Low intensity index,we found a good correlation between intensity of winter Aleutian Low and the SAT over the Arctic during the subsequent summer.Explanations were given using correlation analysis,composite analysis,and singular value decomposition methods.When intensity of winter Aleutian Low was weaker,sea surface temperature appeared higher in the North Pacific in the subsequent spring and summer,resulting in mean meridional circulation anomalies and 500 hPa geopotential height anomalies in spring and summer.Anomalous upward motion in mid-latitudes and downward motion in high latitudes(Ferrel cell weakening)transported the warmer air to the north from lower layer to the upper layer followed by increases in the SAT over the Arctic.Anomalous downward motion over about 75°N also caused consequent adiabatic warming and contributed to inhibit the heat transportation from surface to upper layer.Negative 500 hPa geopotential height anomalies existed in mid-latitudes and positive anomalies existed in high latitudes.The pattern(low-in-south and high-in-north)benefited from increasing the inflow volume flux of the Bering Strait,which also made the SAT over the Arctic increase.The results of this study reveal the process that the summer SAT over the Arctic was modulated by interannual variability of intensity of winter Aleutian Low.  相似文献   

8.
Recent progress of physical oceanography in the South China Sea (SCS) associated with the western boundary current (WBC) and eddies is reviewed in this paper. It includes Argo observations of the WBC, eddy detection in the WBC based on satellite images, cross-continental shelf exchange in the WBC, eddy-current interaction, interannual variability of the WBC, air-sea interaction, the SCS throughflow (SCSTF), among others. The WBC in the SCS is strong, and its structure, variability and dynamic processes on seasonal and interannual time scales are yet to be fully understood. In this paper, we summarize progresses on the variability of the WBC, eddy-current interaction, air-sea interaction, and the SCSTF achieved in the past few years. Firstly, using the drifting buoy observations, we point out that the WBC becomes stronger and narrower after it reaches the central Vietnam coast. The possible mechanisms influencing the ocean circulation in the northern SCS are discussed, and the dynamic mechanisms that induce the countercurrent in the region of northern branch of WBC in winter are also studied quantitatively using momentum balance. The geostropic component of the WBC was diagnosed using the ship observation along 18°N, and we found that the WBC changed significantly on interannual time scale. Secondly, using the ship observations, two anti-cyclonic eddies in the winter of 2003/2004 in the northern SCS, and three anti-cyclonic eddies in the summer of 2007 along 18°N were studied. The results show that the two anti-cyclonic eddies can propagate southwestward along the continental shelf at the speed of first Rossby wave (~0.1 ms-1 ) in winter, and the interaction between the three anti-cyclonic eddies in summer and the WBC in the SCS is preliminarily revealed. Eddies on the continental shelf of northern SCS propagated southeastward with a maximum speed of 0.09 ms-1 , and those to the east of Vietnam coast had the largest kinetic energy, both of which imply strong interaction between eddy activity and WBC in the SCS. Thirdly, strong intraseasonal variability (ISV) of sea surface temperature (SST) near the WBC regions was found, and the ISV signal of SST in winter weakens the ISV signal of latent heat flux by 20%. Fourthly, the long-term change of SCSTF volume transport and its connection with the ocean circulation in the Pacific were discussed.  相似文献   

9.
The internal wave modal equations are solved with the consideration of background currents. Analytical and numerical solutions of some specific examples, including observations in the northern South China Sea (SCS), are obtained to investigate the effect of background current on internal wave vertical structure. The effects of current shear and curvature on internal wave vertical structure are evaluated separately. It is found that the phase speed and wave structure are modified by background currents, the current shear has little effect on wave structure, whilst the current curvature could have strong impact on wave structure. The extent of the effect by the current curvature on the wave structure depends on the magnitudes of current curvature, relative wave speed, and buoyancy frequency, sometimes the effect by the current curvature may even cause the wave to attenuate severely with depth. A new method to obtain the real eigenfunction with depth in the case that the waves become evanescent is also put forward. It is shown that, the residual tidal current in the northern SCS is strong enough to cause the wave to attenuate severely at upper layer.  相似文献   

10.
The internal wave modal equations are solved with the consideration of background currents. Analytical and numerical solutions of some specific examples, including observations in the northern South China Sea (SCS), are obtained to investigate the effect of back- ground current on internal wave vertical structure. The effects of current shear and curvature on internal wave vertical structure are eval- uated separately. It is found that the phase speed and wave structure are modified by background currents, the current shear has little effect on wave structure, whilst the current curvature could have a strong impact on the wave structure. The extent of the effect by the current curvature on the wave structure depends on the magnitudes of current curvature, relative wave speed, and buoyancy frequency, sometimes the effect by the current curvature may even cause the wave to attenuate severely with depth. A new method to obtain the real eigenfunction with depth in the case that the waves become evanescent is also put forward. It is shown that the residual tidal current in the northern SCS is strong enough to cause the wave to attenuate severely at the uooer laver.  相似文献   

11.
Based on analysis of Levitus data in the South China Sea (SCS), this note addresses the seasonal feature of the mixed layer and thermocline in the northern SCS in winter, and demonstrates thermocline ventilation during the winter period. The ventilated thermocline is isopycnic layers between sigma 22.0 and 23.5, the other layers beneath is not ventilated yet. The process of thermocline ventilation is accompanied by detrainment water from the mixed layer into the thermocline at the outcropping line and moves to the south. Forced by subduction, the seasonal southward propagating signal also appears in the unventilated thermocline. The horizontal component of the signal propagatesalong the isoline of potential vorticity (PV), in other words, moves around a seasonal PV pool.  相似文献   

12.
张伟华 《科学技术与工程》2011,11(2):343-346,351
铝锭堆垛机是铝锭连铸生产线的关键设备,铝锭堆垛机的性能已经成为制约铝锭连铸生产线高效性和自动化的瓶颈技术。针对铝锭堆垛机翻转装置翻转铝锭过程中存在的冲击大、翻转过程不平稳等问题,研究了翻转装置主轴的动态特性。通过Pro/e建立了主轴的三维实体模型,考虑了轴承对主轴的约束、伺服电机施加给主轴的动态变化扭矩等,运用有限元分析软件ANSYS对主轴进行了瞬态动力学分析,计算出了翻转装置主轴在动态变化扭矩作用下翻转铝锭的位移、速度、加速度响应。分析结果表明运用伺服电机驱动翻转装置翻转铝锭有效减小了翻转机构在两个极端位置的冲击,提高了翻转过程的平稳性,也为进一步改进该结构进而提高堆垛机的效率提供了一定的理论依据。  相似文献   

13.
使用美国NCEP/NCAR1958-1997年逐日资料,对南海季风爆发前后的气象要素场作了分析。结果表明:南海季风爆发时,南海南、北部要素场变化有差异,北部西南季风爆发特征更为显著。针对南海西南季风爆发特征,提出了用湿位势涡度定义季风指数,它能很好地反映夏季风爆发的特征。其中,用湿位热涡度定义的季风指数对长江中下及华北华南地区的旱涝具有一定的预示性。相关分析表明:前一年冬季的季风指数和秋季的季风指数分别与华北次年夏季降水、华南次年春季降水有显著的相关,而当年夏季的季风指数与长江中下游当年秋季降水呈显著正相关。  相似文献   

14.
南海表层环流和热结构特征的数值模拟与影响因素分析   总被引:1,自引:0,他引:1  
 采用普林斯顿海洋模式,在真实的地形数据、计算区域右边界上半部分设为开边界的条件下,对南中国海98°-126°E,3°S -26°N的范围进行了环流和温度结构的模拟。模拟从静止的海洋开始,以1月份的月平均温盐数据为初始场,在12个不同的月平均风场驱动下,模式稳定地模拟了4个模式年。从第3年开始进行数据分析。首先从数值模拟的角度给出了南海表层环流和热结构的时空演变过程,继而详细分析了气候和环境因素的影响。结果表明:冬季南海主要被一个大的气旋式环流占据,夏季主要呈大的反气旋式环流。春季和秋季是季风转换季节,南海环流在受到上一个季节影响的同时也向下一个季节的典型流态转换,并由多个涡旋组成。此外,气候和环境条件的设置,都会影响到南海的环流和热结构特征。  相似文献   

15.
海南岛地区大气边界层高度的时空变化特征   总被引:3,自引:0,他引:3  
利用WRF模式模拟分析海南岛及其邻近海区的大气边界层高度时空变化特征。结果表明, 海南岛春夏季北部开阔地区平均边界层较高, 约500~600 m; 秋冬季海岛的西北?东?东南沿岸的半环绕地带平均边界层较高, 约500~700 m; 岛内中南部山区平均边界层高度较低且季节变化不大, 数值约200~500 m。各季盛行风向及海风发展因素与平均边界层的空间分布之间有良好的对应关系。海岛周边海区秋冬季平均边界层高度约500~800 m, 春夏季约100~500 m, 呈秋冬季高、春夏季低的季节变化特征。岛内边界层高度最大值出现在春夏季, 可达1800 m以上; 沿岸地区边界层高度最大值出现在秋冬季, 约1300~1500 m。海南岛岛内区域具有典型的陆面大气边界层日变化规律; 沿海地带受盛行风向的影响, 向岸流和离岸流时边界层日变化分别表现为海洋性和陆地性的特点。  相似文献   

16.
根据输导层内油气运移优势路径的形态特征,将油气运移优势路径划分为汇聚型、发散型和平行型3种形式。通过乌尔逊凹陷北部南二段输导层特征分析,在古埋深恢复的基础上,利用油气运移优势路径研究原理和方法对乌尔逊凹陷北部南二段输导层各地质时期的油气运移优势路径进行了研究。得到该区各地质时期南二段输导层油气运移优势路径的分布具有相似特征,主要有5个汇聚区,以苏1井、苏21井和乌8井汇聚区油气运移优势路径密度大,苏21井汇聚区位于生烃灶的边部,苏1井和乌8井汇聚区位于生烃灶内,有利于油气的运聚成藏。西部两个汇聚区油气运移优势路径密度小,且位于生烃灶之外,不利于油气聚集成藏。该区目前的工业油气流井不是分布在油气运移优势路径的汇聚点处,就是在其优势路径上,这是该区南二段油气成藏的重要条件。  相似文献   

17.
Dengler M  Schott FA  Eden C  Brandt P  Fischer J  Zantopp RJ 《Nature》2004,432(7020):1018-1020
The existence in the ocean of deep western boundary currents, which connect the high-latitude regions where deep water is formed with upwelling regions as part of the global ocean circulation, was postulated more than 40 years ago. These ocean currents have been found adjacent to the continental slopes of all ocean basins, and have core depths between 1,500 and 4,000 m. In the Atlantic Ocean, the deep western boundary current is estimated to carry (10-40) x 10(6) m3 s(-1) of water, transporting North Atlantic Deep Water--from the overflow regions between Greenland and Scotland and from the Labrador Sea--into the South Atlantic and the Antarctic circumpolar current. Here we present direct velocity and water mass observations obtained in the period 2000 to 2003, as well as results from a numerical ocean circulation model, showing that the Atlantic deep western boundary current breaks up at 8 degrees S. Southward of this latitude, the transport of North Atlantic Deep Water into the South Atlantic Ocean is accomplished by migrating eddies, rather than by a continuous flow. Our model simulation indicates that the deep western boundary current breaks up into eddies at the present intensity of meridional overturning circulation. For weaker overturning, continuation as a stable, laminar boundary flow seems possible.  相似文献   

18.
Bryden HL  Longworth HR  Cunningham SA 《Nature》2005,438(7068):655-657
The Atlantic meridional overturning circulation carries warm upper waters into far-northern latitudes and returns cold deep waters southward across the Equator. Its heat transport makes a substantial contribution to the moderate climate of maritime and continental Europe, and any slowdown in the overturning circulation would have profound implications for climate change. A transatlantic section along latitude 25 degrees N has been used as a baseline for estimating the overturning circulation and associated heat transport. Here we analyse a new 25 degrees N transatlantic section and compare it with four previous sections taken over the past five decades. The comparison suggests that the Atlantic meridional overturning circulation has slowed by about 30 per cent between 1957 and 2004. Whereas the northward transport in the Gulf Stream across 25 degrees N has remained nearly constant, the slowing is evident both in a 50 per cent larger southward-moving mid-ocean recirculation of thermocline waters, and also in a 50 per cent decrease in the southward transport of lower North Atlantic Deep Water between 3,000 and 5,000 m in depth. In 2004, more of the northward Gulf Stream flow was recirculating back southward in the thermocline within the subtropical gyre, and less was returning southward at depth.  相似文献   

19.
近10年南海海表风场季节特征统计   总被引:2,自引:0,他引:2  
王静  李靖  李荣波  刘寒 《科技资讯》2014,(3):197-200
基于Fortran程序和Grads(Grid Analysis and Display System)软件,利用QN(QuikSCAT/NCEP)混合风场,统计了近10年(1999年8月~2009年7月)期间南海海表风场特征,主要统计了风速风向的季节特征,期望研究结果可以为航海、防灾减灾等提供参考。结果表明:(1)春季,风速的大值区位于南海北部,约3.5~5.0 m/s,台湾海峡能达到5.5 m/s;除泰国湾和北部湾以外的大部分海域以东北风为主,北部湾以偏东风为主,泰国湾以偏南风为主。(2)夏季,受西南季风影响,大部分海域以西南风为主;风速的大值区位于中南半岛附近海域,该海域为传统的南海大风区,约5~7 m/s。(3)秋季,为季风过渡季节,风向稍显凌乱,南海中北部已转东北风,而南部部分海域的西南风尚未完全消退,泰国湾在该季节则以西北风为主;风速的相对大值区位于南海北部和台湾周边海域,约6~9 m/s,台湾海峡基本都在9 m/s左右。(4)冬季,受冷空气影响显著,整个南海均以强势的东北风为主;风速大值区呈东北-西南走向,大部分海域的风速在8 m/s以上,台湾海峡能达到11 m/s左右。  相似文献   

20.
应用Argos表层漂流浮标资料所指示的浮标轨迹图以及基于卫星高度计资料和三维水动力模型海面高度场数据的经验正交函数(EOF)模态分析,探讨了黑潮在吕宋海峡形变的时空分布特征.结果表明:吕宋海峡黑潮的形态呈现明显的季节变化,其中跨隙形态为其最基本的形态;秋冬两季,部分黑潮水会以流套和分支的形式入侵南海,流套最西可延伸至118°E;春夏季节则儿乎不出现流套或者分支的结构,相反会有一部分南海水汇入黑潮主干.模型数据模态分析结果还再现了冬季黑潮水沿着南海北部陆坡向西入侵的形态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号