首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
通过有限元模拟软件ABAQUS,模拟了典型路基路面结构水位变化时,FWD荷载下的路面响应,并通过迭代反算和加权计算的方法,得到了路基当量回弹模量.结果表明:水位的抬升对沥青面层层底拉应变和路基顶面压应变影响明显,二者的变化趋势均类似指数增长;在低水位(水位由-6 m抬升至0 m)时,路基顶面压应变变化更明显,其增幅为30.8%,而在水位抬升至路基浸水接近饱和时,面层层底拉应变变化更显著,水位由5 m抬升至6 m时增幅为39.3%;通过迭代反算和模量加权计算确定的路基当量回弹模量与路基湿度具有较强的相关性,回弹模量随着水位的上升,均呈现明显的线性减小趋势.  相似文献   

2.
 考虑到长寿命沥青路面结构设计参数多、取值范围大等特点,利用力学分析软件研究了各结构层厚度、模量等因素对沥青层底拉应变和路基顶压应变的影响,通过响应面法分析了影响沥青层底拉应变和路基顶压应变的显著因素,并建立了相应的预测模型。结果表明,沥青中间层、基层和底基层厚度对沥青层底拉应变和路基顶压应变影响最为显著,沥青中间层、基层模量对沥青层底拉应变和路基顶压应变有一定影响,且沥青中间层16 cm、模量1800 MPa,基层6 cm、模量1200 MPa,底基层40 cm时,沥青层底拉应变和路基顶压应变综合结果最优。研究结果为长寿命路面结构组合优化提供了一定借鉴和参考。  相似文献   

3.
为了研究隧道半刚性基层沥青路面沥青层疲劳开裂的影响因素,建立隧道半刚性基层沥青路面有限元模型,对隧道半刚性基层沥青路面沥青层疲劳开裂进行研究。研究结果表明:对于隧道半刚性基层沥青路面,由于沥青层内最大拉应变显著大于沥青层底拉应变,导致沥青层内的疲劳寿命远小于沥青层底的疲劳寿命;沥青层层底疲劳开裂寿命影响因素敏感性排序为:基层模量面层模量≈面层厚度基层厚度;隧道半刚性基层沥青路面基层模量越大、基层厚度越厚、沥青面层模量越小,对沥青面层疲劳开裂寿命越有利。  相似文献   

4.
陈怡 《科技资讯》2006,(21):38-38
利用FWD检测弯沉盆数据和路用雷达探测数据后,反算出各路段不同车道的路基顶面当量回弹模量。进行旧路补强设计,要验算补强层层底拉应力、设计弯沉值和旧水泥混凝土板底的弯拉应力。  相似文献   

5.
重载作用下沥青路面结构动态响应敏感性分析   总被引:1,自引:0,他引:1  
采用三维有限元动力分析模型,分析了重载移动作用下轴载重量、轴载速度、路面结构参数等因素变化,对沥青路面动态响应的影响.结果表明:路面动态响应随着轴重的增加呈线性显著增加;轴载速度对路面动态响应有一定的影响,路面结构动态响应随轴载速度的增加呈现先增加再降低的趋势,重载车辆以常见速度运行时,对路面结构产生的疲劳破坏影响显著大于静载产生的疲劳破坏;路面结构参数中,面层厚度对路表剪应力、路表竖向压应力影响特别显著,路基模量对路表弯沉、底基层拉应力、路基顶面压应变影响特别显著.  相似文献   

6.
依托遂广高速公路沥青路面动态响应试验段,进行了系统采集数据的有效性分析,并基于沥青混合料、级配碎石和土体经典力学理论,评价了单后轴和双后轴货车作用下路面结构内部水平应变和竖向力学指标时程曲线的力学基本特征.研究结果表明:移动荷载作用下,沥青层层底纵向应变先后出现压—拉—压循环交变应变,沥青层层底横向应变表现为压—拉两个过程,沥青层层底纵向和横向应变应分别采用应变幅值和拉应变峰值作为路面在荷载作用下实际应变变化值,且沥青层层底横向应变测值受轮胎作用位置影响较大;同时,荷载驶离传感器后,沥青层层底水平应变响应存在明显残余应变,而土基顶面竖向压应力并不存在残余应力;双后轴货车后轴对应的路基顶面竖向压应力和沥青层层底横向应变叠加效应显著高于其他指标.现场试验证实,路面结构动态计算分析中,路基可简化为弹性体,沥青混合料材料应考虑其黏弹性特征,级配碎石过渡层应考虑其永久变形特性.  相似文献   

7.
通过引入机场柔性道面结构的飞机当量单轮荷载系数ζ和旁邻轮影响系数φ;明确了当量单轮荷载的概念和计算公式。分别基于结构层层底弯拉应力、应变和土基顶面压应变设计指标,分析了主起落架构型分别为双轮、双轴双轮和三轴双轮的飞机当量单轮荷载系数ζ随机场道面结构参数的变化规律。研究表明:计算沥青面层层底弯拉应变,刚性、半刚性基层层底弯拉应力的当量单轮荷载系数ζ时仅考虑计一根(或一排)轴载的影响;计算土基顶面压应变的ζ时可计入所有旁邻轮的影响。最后,给出了基于结构层层底弯拉应力、应变和土基顶面压应变的40余种飞机的当量单轮荷载系数ζ的近似回归公式。  相似文献   

8.
文章采用广义Maxwell模型描述沥青混合料面层的黏弹性,考虑碎石基层和土基的横观各向同性特征对路面结构力学行为的影响。在弹性假设条件下引入材料水平模量与竖直模量比值为变量,运用有限元方法建立路面结构三维有限元模型;通过模拟计算,对比分析均布荷载作用下碎石基层和土基各向同性与横观各向同性对各结构层应力和应变及路表弯沉值的影响,并对沥青路面服务寿命进行预估分析。分析结果表明:均布荷载作用下碎石基层的横观各向同性特征对路表弯沉影响较小,而土基横观各向同性特征对路表弯沉影响较大;路基顶部压应变受碎石基层及土基横观各向同性特征影响较大,而面层层底拉应变和基层底拉应力仅受碎石基层横观各向同性特征影响较大;沥青路面服务寿命受碎石基层横观各向同性特征影响较大,且在碎石基层各向同性时服务寿命最长。因此,在路面结构设计中应适当考虑基层和路基材料的横观各向同性特征。  相似文献   

9.
抗车辙柔性基层耐久性沥青路面车辙疲劳影响规律   总被引:1,自引:0,他引:1  
为了解决柔性基层的车辙问题,从车辙破坏机理出发,采用英国壳牌设计软件及剪应变、弯拉应变、路基顶面压应变3个代表性指标,通过大量分析计算,得到了结构层厚度、模量等因素对抗车辙柔性基层耐久性沥青路面的影响规律。研究结果表明:抗车辙柔性基层耐久性路面面层总厚度应不小于18cm,半刚性底基层厚度应不小于15cm,但半刚性底基层厚度的增加会引起中、下面层层内剪应变的增加,对抗车辙不利,不宜过大,面层和基层总厚度宜大于40cm;中面层采用高模量沥青混凝土,能明显增强柔性基层耐久性路面的抗车辙和疲劳性能;设计合理的抗车辙柔性基层耐久性沥青路面结构,柔性基层及其下层发生疲劳破坏的可能性不大。  相似文献   

10.
为深入研究青藏高寒高海拔地区宽幅公路沥青路面力学响应,以指导该区域宽幅公路沥青路面结构设计、路基填挖形式及高度选择。将基于欧拉描述的大变形固结理论应用于冻土融化固结分析,研究融沉作用下路基高度、路面结构形式、宽度、厚度及模量对宽幅公路沥青路面力学响应的影响规律,并基于多目标规划理念,提出以沥青层底拉应变及路表差异沉降量综合最小为目标的力学响应综合评价指标P,用以评价路面综合力学响应。结果表明:柔性基层沥青路面沥青层底拉应变随路表差异沉降量呈先增大后减小的变化规律,倒装式、半刚性及复合式基层沥青路面、半刚性底基层层底拉应力则随其呈线性增大趋势;融沉作用下,ATB-25层底横向拉应变小于不考虑冻土融沉作用时;年均气温为-3.5℃、-4.5℃时,半刚性底基层横向拉应力显著大于不考虑冻土融沉作用时;P均值随路面宽度增大而增大,且22.5m时增大最显著;填方路基P均值随填方高度增大先减小后增大,高度为1m时最大,2m时最小,此后逐渐增大;挖方路基P均值随挖方高度增大而增大,高度为1m时最小,2m时显著增大。从路面力学响应角度,建议多年冻土区宽幅公路应尽量减小路面宽度,不宜大于17.5m;路基填方高度不宜小于2m,挖方高度宜为1m以下;对于年均气温-3.5℃、-4.5℃地区,路面结构形式宜选取柔性基层沥青路面。  相似文献   

11.
横观各向同性的半刚性基层沥青路面结构   总被引:1,自引:0,他引:1  
为了分析土基和沥青面层材料的横观各向同性特性对半刚性基层沥青路面结构的影响,基于建立的横观各向同性沥青路面设计理论,运用编制的基于该理论解的路面结构分析程序ANISOLAYER,利用沥青面层及土基横观各向同性特性,对半刚性基层沥青路表(路表面)弯沉进行了研究。同时运用ANISOLAYER程序分析了在不同厚度沥青面层及不同半刚性基层弹性模量情况下,土基横观各向同性特性对路面结构关键性设计指标的影响(路表弯沉、半刚性基层底部拉应力及路基顶部压应变,沥青层底应变为压应变或较小的拉应变,故未考虑)。研究结果表明:无论是面层还是土基,其各向异性度(水平弹性模量与垂直弹性模量之比)对路表弯沉的影响曲线变化趋势是一致的;随着土基水平模量的增加,延长了路面的寿命;随着半刚性基层弹性模量的增大,土基水平模量的变化对路表弯沉及基层底部拉应力的敏感性将降低,对路基顶部压应变的敏感性更加显著,但其绝对值较小。  相似文献   

12.
移动交通荷载下饱和沥青路面的水力耦合分析   总被引:1,自引:0,他引:1  
为了解沥青路面的水损害机理,基于Biot动力固结理论,建立了移动交通荷载下“面层-基层-路基”三层体系的物理模型和水力耦合动力控制方程.利用Fourier级数展开、Fourier变换等方法获得了各路面结构层中各物理场分布的半解析解和数值解.经过对比分析干燥路面和饱和路面面层中的应力分布和孔隙水压力分布、路面面层底部排水条件对路面动力响应的影响以及路面剪切模量对孔隙水压力分布的影响,发现:相对于干燥弹性的沥青路面,饱和沥青路面在移动交通荷载的作用下会产生较高的拉应力,形成更大的拉应力区;完全排水边界会显著影响高渗透性路面内的孔隙水压力和孔隙水流速的分布和大小,但是对于低渗透性的路面而言,完全排水边界对孔隙水压力和孔隙水流速的分布和大小影响较弱,只在接近于面层底部的小区域范围内影响显著;最大孔隙水压力随着面层剪切模量的增大而有所降低;排水和不排水边界条件下的最大孔隙水压力都随着基层剪切模量的降低而有所增大.  相似文献   

13.
基于横观各向同性碎石底基层沥青路面结构分析   总被引:2,自引:0,他引:2  
基于所建的横观各向同性层状弹性体系解,使用编制的基于该理论解的路面结构分析程序ANISOLAYER,分析了碎石材料横观各向同性特性对碎石底基层半刚性沥青路面结构的影响,对于软土地基来说,起到一定的加筋作用,随着粒状类材料水平模量的减小,可有效地降低半刚性基层底部的拉应力,使路面结构的受力状况更加符合实际,而且从路表弯沉、沥青层底部拉应变、半刚性基层底部拉应力以及路基顶部压应变来看,都使路面的寿命减小。  相似文献   

14.
半刚性基层沥青路面与全厚式沥青路面疲劳特性比较   总被引:2,自引:0,他引:2  
沥青混合料疲劳试验的荷载控制模式有应力控制和应变控制两种。文章经理论计算分析了半刚性基层沥青路面和全厚式沥青路面的沥青层在交通荷载作用下疲劳时的应力和应变状态。从而研究相应于两类沥青路面沥青混合料疲劳试验合适的荷载控制模式。计算表明 ,随着面层和基层材料劲度的逐渐下降 ,两类沥青路面的沥青层层底的弯拉应力和弯拉应变的变化规律有所不同 ;全厚式沥青路面沥青层层底的弯拉应力和弯拉应变随混合料劲度的变化规律 ,更加类似于应变控制模式的疲劳试验时小梁试件的应力、应变的变化规律。因此 ,全厚式沥青路面沥青混合料的疲劳试验更适宜采用应变控制的荷载模式。  相似文献   

15.
机场薄层沥青道面荷载应力和位移分析   总被引:3,自引:0,他引:3       下载免费PDF全文
采用三维等参有限元法,分析了简易机场薄层沥青道面各层间完全连续接触时土基回弹模量、基层回弹模量和厚度等因素对荷载应力和表面弯沉的影响。分析表明,半刚性基层底面拉应力随土基回弹模量、基层回弹模量和厚度近似呈线性变化;面层底面受压,应力值变化很小,基本不受影响;表面弯沉随基层厚度呈线性变化,随土基回弹模量和基层回弹模量呈曲线变化。  相似文献   

16.
基于层状弹性理论,利用远离承载板中心的两点路表变形响应反算土基回弹模量。根据半刚性基层沥青路面常用路面结构组合形式,构建土基回弹模量与两点路表弯沉值之间一一对应的数据库,建立回归模型。由理论弯沉盆和实测弯沉盆的预测结果表明,建立的土基回弹模量回归预测模型具有良好的精度和可靠性,为进一步快速、有效地评定土基的承载能力提供了依据。  相似文献   

17.
借助三维有限元软件,建立半刚性基层沥青道面和柔性基层沥青道面结构模型,分析了B737,B767,B777飞机荷载作用下,土基材料非线性、粒料材料非线性、土基和粒料材料均为非线性三种情况时对道面结构力学响应的影响.结果表明,在三类不同起落架荷载作用下,随着轮载的增加,材料非线性对道面结构力学响应的影响逐渐增加,土基非线性对两种道面结构的力学响应影响不明显.半刚性基层沥青道面结构,粒料非线性与土基和粒料均为非线性时对道面表面弯沉和土基顶面竖向压应变影响不显著,但对沥青面层底部的拉应变和半刚性基层底部的拉应力影响较为明显.柔性基层沥青道面结构,粒料非线性对表面弯沉的影响不显著,但对土基顶面竖向压应变影响较大,土基和粒料均为非线性时对沥青面层底部拉应变的影响明显.  相似文献   

18.
根据广西公路网的具体情况,参考现行规范的要求,结合重载条件下沥青路面结构应力分析,对重载交通的特点以及路面材料参数的取值进行了探讨.建议重载作用下土基回弹模量通过野外承载板法测得的回弹变形0.6mm内的变形线性拟合获得;考虑到重载条件下半刚性材料的p-l曲线表现出明显非线性,建议将半刚性材料的应力应变工作区间延伸到极限荷载的75%~80%.并在工程实践的基础上推荐了几种路面结构组合.  相似文献   

19.
基于地下水变位的路基顶面当量回弹模量预估   总被引:8,自引:0,他引:8  
在分析总结国内外关于非饱和土土壤水分特征曲线相关研究资料的基础上,结合所提出的3种土的回弹模量预估方程,探讨建立基于地下水位变化的路基顶面当量回弹模量预估模型,并根据上海市罗山路实测数据对其进行验证分析.分析表明,该模型可以较为准确地预估路基顶面当量回弹模量.  相似文献   

20.
针对半刚性路面(S1)、倒装式路面(S2)、组合式路面(S3)开展三维有限元计算,分析其面层底动态应变的空间分布特性及车辆荷载参数对沥青路面动态应变响应的影响规律;同时,基于应变响应及沥青层疲劳预估方程,对比不同类型路面的疲劳寿命.结果表明:行车荷载在沥青路面面层层底平面所引起的拉应变主要集中在轮印作用区域,其由应变值所表征的最不利位置出现在轮印面积中心;车辆动载条件下的应变响应量小于静态荷载模式,其中,S2的动、静力差异性表现尤为显著;随着轴质量的增加,面层底动态应变逐渐增大;而随着车速的提高,应变响应量逐渐减小;随着轴质量的增加,沥青层疲劳寿命急剧减小;在行车安全的前提下,合理提高车辆行车速度有利于提高沥青路面使用寿命,3种路面的面层疲劳寿命排序为S1>S3>S2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号