首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为实现三维地形场景实时光照和阴影,采用顶点周围四点高程和GPU(显卡)寄存器绑定方法,借助顶点缓冲区和顶点着色器实时计算顶点法向量,对比主流地形着色算法,实验验证了GPU法向量实时计算效率和显卡兼容性.研究结果表明:地形场景为百万级(1 048 576)三角形时,GPU顶点法向量计算方法具备较高渲染帧率(66帧/s)和较好显卡兼容性.研究结论初步突破了真实感地形需要Normal Map的限制,有利于网络条件下快速高效渲染大规模真实感地形.  相似文献   

2.
为实现高光谱影像数据快速降维,基于nVidia 的图像处理单元(graphic processing unit, GPU)研究最大噪声分数变换(Maximum Noise Fraction Rotation,MNF Rotation)降维算法的并行设计与优化,通过对加速热点并行优化,择优整合,设计并实现基于CUBLAS(CUDA Basic Linear Algebra Subprograms)库的MNF-L(MNF-on-Library)算法和基于CPU/GPU异构系统的MNF-C(MNF-on-CUDA)算法.实验结果显示MNF-L算法加速11.5~60.6倍不等,MNF-C算法加速效果最好,加速46.5~92.9倍不等.研究结果表明了GPU在高光谱影像线性降维领域的巨大优势.  相似文献   

3.
对基于统一计算设备架构(CUDA)的图形处理器(GPU)在图形处理方面的算法进行了研究和实现.针对目前图像处理算法日益复杂,性能要求越来越高,而传统的基于CPU的图像处理算法无法满足需求的情况,充分利用GPU突出的并行处理能力,采用CUDA技术,利用C++语言实现了图像处理算法.研究并设计了高斯模糊处理算法、彩色负片处理算法、透明合并处理算法的GPU并行运算流程,与CPU的性能对比表明基于GPU图像处理算法的效率更高.  相似文献   

4.
为实现高光谱影像数据快速降维,基于nVidia的图像处理单元(graphic processing unit,GPU)研究最大噪声分数变换(Maximum Noise Fraction Rotation,MNF Rotation)降维算法的并行设计与优化,通过对加速热点并行优化,择优整合,设计并实现基于CUBLAS(CUDA Basic Linear Algebra Subprograms)库的MNF-L(MNF-on-Library)算法和基于CPU/GPU异构系统的MNF-C(MNF-on-CUDA)算法.实验结果显示MNF-L算法加速11.5~60.6倍不等,MNF-C算法加速效果最好,加速46.5~92.9倍不等.研究结果表明了GPU在高光谱影像线性降维领域的巨大优势.  相似文献   

5.
点云模型是一种新兴的物体几何表示方式,基于点的建模与绘制技术是近年来计算机图形学的研究热点之一。随着可编程特性的出现,GPU成为图形学研究中越来越流行的计算平台。以GPU为计算工具,设计了一种适合于GPU处理的类八叉树空间剖分结构,提出了一种新的基于GPU中的点模型光线求交算法,实现了基于GPU的点模型的快速光线跟踪绘制。  相似文献   

6.
基于形变模型的三维人脸快速重建改进算法   总被引:1,自引:0,他引:1  
针对传统三维人脸重建算法效率低且难以满足实际应用的缺陷, 提出一种三维人脸重建改进算法。该算法基于ASM(Active Shape Model) 增强算法, 自动地对特定二维人脸特征区域进行准确定位, 并实现三维人脸数据库的归一化; 利用稀疏形变模型对特定正面二维人脸进行快速三维重建; 采用明暗纹理恢复算法对重建后的三维模型人脸特征区域的每个顶点法线进行约束, 并将其应用于人脸识别中。实验结果表明, 该方法可实现对特定正面二维人脸快速三维重建, 并取得较好的三维重建精度与识别率, 与经典ASM算法相比, 精度提高12.3%, 迭代次数减少6次。  相似文献   

7.
基于SURF-RANSAC配准的三维重建   总被引:1,自引:0,他引:1  
为了提高三维重建中双目特征匹配的匹配效率和重建质量,在基于传统的加速鲁棒特征(SURF)匹配算法基础上,提出了一种基于SURF-RANSAC配准的三维重建算法。利用左右两幅图像来进行三维重建,首先通过Hessian矩阵来获取目标图像的初始特征点,并用邻近快速搜索算法完成初步的特征点匹配,然后融合随机抽样一致性算法(RANSAC)来优化匹配,最后利用三维坐标和纹理映射来完成三维重建。在Open CV上对该算法进行验证。结果表明,本文算法比传统的三维重建算法具有更高的精确度和更快的速度。  相似文献   

8.
提出一种基于图形处理器(GPU)的对称正定稀疏矩阵复线性方程组迭代算法. 首先, 采用基于GPU的共轭梯度法和双共轭梯度法, 实现GPU上的矩阵向量乘操作, 并充分优化相应的算法步骤; 其次, 实现基于GPU的对角元预处理、 不完全Cholesky分解和对称超松弛3种预处理方法, 提出一种基于GPU的求解三角方程组并行算法; 最后, 实验分析各种预处理方法的优劣. 实验结果表明, 该算法较CPU串行迭代算法与经典的直接法速度提升较大, 最高可达到76倍的加速比.  相似文献   

9.
基于CUDA平台的时域有限差分算法研究   总被引:1,自引:1,他引:0  
文章针对传统时域有限差分(FDTD)算法的不足,以图形加速卡为核心,通过理论分析和数值模拟,研究并实现了基于CUDA平台的FDTD并行算法。CUDA是最新的可编程多线程的通用计算GPU模型,由于FDTD算法在空间上具有天然的并行性,因此非常适合在GPU上实现并行算。文章描述了在CUDA编程模型上的FDTD算法的设计以及优化过程,并通过数值仿真实验结果证明了基于GPU的并行FDTD算法可以大大减少计算时间,基于GPU加速已成为电磁场数值计算的研究热点之一。  相似文献   

10.
提出一种基于图形处理器(GPU)硬件加速的频域非下采样轮廓波变换(FNSCT)算法.该算法构造了更加简单、快速的频域非下采样轮廓波变换,有效消除了传统小波变换以及轮廓波变换应用于图像融合算法时引起的振铃和伪吉布斯现象.结合GPU在并行大规模浮点数及快速傅里叶变换(FFT)上的高速运算能力,解决了非下采样轮廓波变换(NSCT)速度慢的问题,实现了一种高精度的医学图像融合加速算法.  相似文献   

11.
针对在三维地形处理领域中存在的地形数据冗余,可视化处理效率不高,真实感效果不强的问题,提出一种基于delaunay三角网的三维地形生成技术及可视化仿真处理的方法。该方法将DEM数据转化为TIN数据,然后用改进的delaunay算法将TIN数据生成三角网来模拟地形。最后经过纹理映射,光照及渲染,生成具有真实感的三维地形。同时给出了运用VC++和OpenGL实现的三维真实感地形可视化仿真软件。仿真试验表明:该方法能快速的处理地形高程数据,得到了直观的真实感较强的三维地形模型。  相似文献   

12.
针对飞行模拟的特点, 提出一种基于受限四叉树的大规模地形绘制误差判断方法. 该方法利用误差饱和概念, 采用符合并行计算要求的误差判断准则进行层次细节的选取, 使误差判断与三角化过程完全由图形处理器(GPU)执行, 提高了图形硬件的绘制效率, 节省了中央处理器(CPU)运行时间, 可用于高速飞行模拟中的大规模地形实时绘制.  相似文献   

13.
针对沥青路面微观形貌常用检测方法的不足,融合显微视觉的局部放大特性和数字图像处理技术,提出了基于显微视觉的沥青路面微观纹理三维重构方法。根据激光三角测量原理建立显微视觉三维重构数学模型;利用立体显微镜采集序列图像,对图像进行插值处理和阈值分割,并提取光条中心线;采用Delaunay三角剖分算法实现表面三维重构。与基于聚焦深度的沥青路面微观纹理三维重构方法进行试验对比分析,结果表明,本文方法对光照均匀性无特殊要求,具有精度高、操作简便、三维直观性强等特点。  相似文献   

14.
主要讨论了基于序列图像的三维重建中的两个关键算法:特征数据点列的重采样算法与三角化算法.本文改进了Chetverikov等提出的轮廓曲线中高曲率点的检测算法,使在重采样时,数据的压缩比得到了明显的改善,也显著地提高了可视化速度.并使用一种简单的三角化算法,对重采样后的数据点列进行三角化,实现目标的三维重建.  相似文献   

15.
随着图像数据量的增加,传统单核处理器或多处理器结构的计算方式已无法满足图像灰度化实时处理需求.该文利用图像处理器(GPU)在异构并行计算的优势,提出了基于开放式计算语言(OpenCL)的图像灰度化并行算法.通过分析加权平均图像灰度化数据处理的并行性,对任务进行了层次化分解,设计了2级并行的并行算法并映射到“CPU+GPU”异构计算平台上.实验结果显示:图像灰度化并行算法在OpenCL架构下NVIDIA GPU计算平台上相比串行算法、多核CPU并行算法和CUDA并行算法的性能分别获得了27.04倍、4.96倍和1.21倍的加速比.该文提出的并行优化方法的有效性和性能可移植性得到了验证.  相似文献   

16.
并行计算是提高音频大地电磁(audio-frequency magnetotelluric method,AMT)数据反演效率的有效途径。本文在统一计算设备架构(compute unified device architecture,CUDA) 下开展带地形的AMT数据二维反演并行算法研究,旨在利用GPU强大的计算能力及并行计算技术实现高精度、快速度的AMT数据二维反演。首先利用有限元和自适应正则化反演算法实现AMT数据二维反演的串行化计算;然后在PGI Visual Fortran+ CUDA5.5环境下编写基于CPU+GPU的CUDA并行代码,将正演中的频率循环、反演中的模型灵敏度矩阵计算和反演方程正则化求解部分进行并行化处理;通过不同复杂程度的理论模型正反演模拟验证了该并行算法的有效性和准确性。不同模型和不同模式下的数值模拟结果对比表明,基于CPU+GPU的CUDA并行算法相较于传统的CPU串行算法,在灵敏度矩阵计算和反演方程正则化方面耗时更少,加速比最高可达10倍以上。最后将该并行算法应用于某矿区实测AMT数据的二维反演中,取得了较好的应用效果。  相似文献   

17.
 在医学超声成像系统中由于超声波在人体组织内传播会发生衰减,需要对超声图像进行有效的增益补偿,使超声图像的显示效果更好。但大多数自动增益补偿算法在处理时涉及大量的复杂计算,成为临床实时成像系统中的一大性能提升瓶颈,为此提出了一种基于高性能并行计算平台Fermi架构图形处理单元(GPU)的自动增益补偿并行处理算法。本算法主要的处理流程有数据预处理、区域类型检测、组织强度计算、二次曲面拟合以及自适应增益补偿等部分,核心的并行算法设计包括了粗粒度的并行均值滤波、局部方差系数的并行计算、优化的矩阵转置并行实现以及基于LU分解的粗粒度的矩阵求逆的并行实现等方面。数据测试结果显示,与基于CPU的实现相比,采用Fermi架构的GPU处理不仅可以得到完全一致和较好的增益补偿效果,而且可以取得较大的加速效果,满足实时系统需求,对512×261的图像数据能够达到427帧/s的高帧率,速度提高了大约267倍。  相似文献   

18.
本文主要讨论了基于序列图像的三维重建中的两个关键算法:特征数据点列的重采样算法与三角化算法.本文把Douglas-Peucker线性简化算法应用在特征边界的重采样上,数据的压缩比得到了明显的改善,也显著地提高了可视化处理速度.并使用一种简单的三角化算法,对重采样后的数据点列进行三角化,实现目标的三维重建.  相似文献   

19.
相息图以其衍射效率高,无共轭像等优点而被广泛应用于全息三维动态显示中,然而相息图计算量大,生成速度慢而影响了它的实时动态显示;鉴于此,提出了一种三维场景相息图快速生成方法;采用OpenGL进行物点离散采样,逐点计算的优化查表算法进行相息图计算,将相位因子拆成水平方向和竖直方向因子的乘积,离线制作的查找表只需存储水平方向和竖直方向因子,从而使存入GPU纹理内存的查找表空间大大减少,并利用CUDA架构合理设计并行计算方案,使相息图的运算速度进一步加速;实验表明:采用此方法能正确生成所需的相息图,且计算速度比基于CPU的计算方法提高了40倍左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号