首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The generation of new neurons from neural stem cells is restricted to two regions of the adult mammalian central nervous system: the subventricular zone of the lateral ventricle, and the subgranular zone of the hippocampal dentate gyrus. In both regions, signals provided by the microenvironment regulate the maintenance, proliferation and neuronal fate commitment of the local stem cell population. The identity of these signals is largely unknown. Here we show that adult hippocampal stem/progenitor cells (AHPs) express receptors and signalling components for Wnt proteins, which are key regulators of neural stem cell behaviour in embryonic development. We also show that the Wnt/beta-catenin pathway is active and that Wnt3 is expressed in the hippocampal neurogenic niche. Overexpression of Wnt3 is sufficient to increase neurogenesis from AHPs in vitro and in vivo. By contrast, blockade of Wnt signalling reduces neurogenesis from AHPs in vitro and abolishes neurogenesis almost completely in vivo. Our data show that Wnt signalling is a principal regulator of adult hippocampal neurogenesis and provide evidence that Wnt proteins have a role in adult hippocampal function.  相似文献   

2.
Ahn S  Joyner AL 《Nature》2005,437(7060):894-897
Sonic hedgehog (Shh) has been implicated in the ongoing neurogenesis in postnatal rodent brains. Here we adopted an in vivo genetic fate-mapping strategy, using Gli1 (GLI-Kruppel family member) as a sensitive readout of Shh activity, to systematically mark and follow the fate of Shh-responding cells in the adult mouse forebrain. We show that initially, only a small population of cells (including both quiescent neural stem cells and transit-amplifying cells) responds to Shh in regions undergoing neurogenesis. This population subsequently expands markedly to continuously provide new neurons in the forebrain. Our study of the behaviour of quiescent neural stem cells provides in vivo evidence that they can self-renew for over a year and generate multiple cell types. Furthermore, we show that the neural stem cell niches in the subventricular zone and dentate gyrus are established sequentially and not until late embryonic stages.  相似文献   

3.
N-CoR controls differentiation of neural stem cells into astrocytes   总被引:36,自引:0,他引:36  
Hermanson O  Jepsen K  Rosenfeld MG 《Nature》2002,419(6910):934-939
  相似文献   

4.
5.
Mammalian ageing is associated with reduced regenerative capacity in tissues that contain stem cells. It has been proposed that this is at least partially caused by the senescence of progenitors with age; however, it has not yet been tested whether genes associated with senescence functionally contribute to physiological declines in progenitor activity. Here we show that progenitor proliferation in the subventricular zone and neurogenesis in the olfactory bulb, as well as multipotent progenitor frequency and self-renewal potential, all decline with age in the mouse forebrain. These declines in progenitor frequency and function correlate with increased expression of p16INK4a, which encodes a cyclin-dependent kinase inhibitor linked to senescence. Ageing p16INK4a-deficient mice showed a significantly smaller decline in subventricular zone proliferation, olfactory bulb neurogenesis, and the frequency and self-renewal potential of multipotent progenitors. p16INK4a deficiency did not detectably affect progenitor function in the dentate gyrus or enteric nervous system, indicating regional differences in the response of neural progenitors to increased p16INK4a expression during ageing. Declining subventricular zone progenitor function and olfactory bulb neurogenesis during ageing are thus caused partly by increasing p16INK4a expression.  相似文献   

6.
A role for adult TLX-positive neural stem cells in learning and behaviour   总被引:1,自引:0,他引:1  
Zhang CL  Zou Y  He W  Gage FH  Evans RM 《Nature》2008,451(7181):1004-1007
Neurogenesis persists in the adult brain and can be regulated by a plethora of external stimuli, such as learning, memory, exercise, environment and stress. Although newly generated neurons are able to migrate and preferentially incorporate into the neural network, how these cells are molecularly regulated and whether they are required for any normal brain function are unresolved questions. The adult neural stem cell pool is composed of orphan nuclear receptor TLX-positive cells. Here, using genetic approaches in mice, we demonstrate that TLX (also called NR2E1) regulates adult neural stem cell proliferation in a cell-autonomous manner by controlling a defined genetic network implicated in cell proliferation and growth. Consequently, specific removal of TLX from the adult mouse brain through inducible recombination results in a significant reduction of stem cell proliferation and a marked decrement in spatial learning. In contrast, the resulting suppression of adult neurogenesis does not affect contextual fear conditioning, locomotion or diurnal rhythmic activities, indicating a more selective contribution of newly generated neurons to specific cognitive functions.  相似文献   

7.
Mizutani K  Yoon K  Dang L  Tokunaga A  Gaiano N 《Nature》2007,449(7160):351-355
During brain development, neurons and glia are generated from a germinal zone containing both neural stem cells (NSCs) and more limited intermediate neural progenitors (INPs). The signalling events that distinguish between these two proliferative neural cell types remain poorly understood. The Notch signalling pathway is known to maintain NSC character and to inhibit neurogenesis, although little is known about the role of Notch signalling in INPs. Here we show that both NSCs and INPs respond to Notch receptor activation, but that NSCs signal through the canonical Notch effector C-promoter binding factor 1 (CBF1), whereas INPs have attenuated CBF1 signalling. Furthermore, whereas knockdown of CBF1 promotes the conversion of NSCs to INPs, activation of CBF1 is insufficient to convert INPs back to NSCs. Using both transgenic and transient in vivo reporter assays we show that NSCs and INPs coexist in the telencephalic ventricular zone and that they can be prospectively separated on the basis of CBF1 activity. Furthermore, using in vivo transplantation we show that whereas NSCs generate neurons, astrocytes and oligodendrocytes at similar frequencies, INPs are predominantly neurogenic. Together with previous work on haematopoietic stem cells, this study suggests that the use or blockade of the CBF1 cascade downstream of Notch is a general feature distinguishing stem cells from more limited progenitors in a variety of tissues.  相似文献   

8.
Adult neural stem cells-Functional potential and therapeutic applications   总被引:4,自引:0,他引:4  
The adult brain has been thought traditionally as a structure with a very limited regenerative capacity. It is now evident that neurogenesis in adult mammalian brain is a prevailing phenomenon. Neural stem cells with the ability to self-renew, differentiate into neurons, astrocytes and oligodendrocytes reside in some regions of the adult brain. Adult neurogenesis can be stimulated by many physiological factors including pregnancy. More strikingly, newborn neurons in hippocampus integrally function with local neurons, thus neural stem cells might play important roles in memory and learning function. It seems that neural stem cells could transdifferentiate into other tissues, such as blood cells and muscles. Although there are some impediments in this field, some attempts have been made to employ adult neural stem cells in the cell replacement therapy for traumatic and ischemic brain injuries.  相似文献   

9.
10.
PML targeting eradicates quiescent leukaemia-initiating cells   总被引:1,自引:0,他引:1  
The existence of a small population of 'cancer-initiating cells' responsible for tumour maintenance has been firmly demonstrated in leukaemia. This concept is currently being tested in solid tumours. Leukaemia-initiating cells, particularly those that are in a quiescent state, are thought to be resistant to chemotherapy and targeted therapies, resulting in disease relapse. Chronic myeloid leukaemia is a paradigmatic haematopoietic stem cell disease in which the leukaemia-initiating-cell pool is not eradicated by current therapy, leading to disease relapse on drug discontinuation. Here we define the critical role of the promyelocytic leukaemia protein (PML) tumour suppressor in haematopoietic stem cell maintenance, and present a new therapeutic approach for targeting quiescent leukaemia-initiating cells and possibly cancer-initiating cells by pharmacological inhibition of PML.  相似文献   

11.
12.
Pax3 functions at a nodal point in melanocyte stem cell differentiation   总被引:2,自引:0,他引:2  
Lang D  Lu MM  Huang L  Engleka KA  Zhang M  Chu EY  Lipner S  Skoultchi A  Millar SE  Epstein JA 《Nature》2005,433(7028):884-887
  相似文献   

13.
Retinoic acid (RA) plays an important role in development of vertebrate embryos. We demonstrate impacts of exogenous RA on the formation of neural crest cells in zebrafish using specific neural crest markers sox9b and crestin. Treatment with all -trans RA at 10−7 mmol/L at 50% epiboly induces sox9b expression in the forebrain and crestin expression in the forebrain and midbrain, resulting in significant increase of pigment cells in the head derived from the cranial neural crest. In addition, RA treatment induces expression of sox9b and crestin in the caudal marginal cells of the neuroectoderm during early segmentation. Earlier commitment of these cells to the neural crest fate in the posterior margins leads to abnormal development of the posterior body, probably by preventing mingling of ventral derived and dorsal-derived cells during the formation of the tailbud.  相似文献   

14.
Mechanisms controlling brain size include the regulation of neural progenitor cell proliferation, differentiation, survival and migration. Here we show that ephrin-A/EphA receptor signalling plays a key role in controlling the size of the mouse cerebral cortex by regulating cortical progenitor cell apoptosis. In vivo gain of EphA receptor function, achieved through ectopic expression of ephrin-A5 in early cortical progenitors expressing EphA7, caused a transient wave of neural progenitor cell apoptosis, resulting in premature depletion of progenitors and a subsequent dramatic decrease in cortical size. In vitro treatment with soluble ephrin-A ligands similarly induced the rapid death of cultured dissociated cortical progenitors in a caspase-3-dependent manner, thereby confirming a direct effect of ephrin/Eph signalling on apoptotic cascades. Conversely, in vivo loss of EphA function, achieved through EphA7 gene disruption, caused a reduction in apoptosis occurring normally in forebrain neural progenitors, resulting in an increase in cortical size and, in extreme cases, exencephalic forebrain overgrowth. Together, these results identify ephrin/Eph signalling as a physiological trigger for apoptosis that can alter brain size and shape by regulating the number of neural progenitors.  相似文献   

15.
Ge S  Goh EL  Sailor KA  Kitabatake Y  Ming GL  Song H 《Nature》2006,439(7076):589-593
Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (gamma-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.  相似文献   

16.
人和小鼠神经干细胞的体外培养的分化研究   总被引:4,自引:0,他引:4  
首次克隆了小鼠神经元标志性微管蛋白βⅢ基因,从核苷酸序列推导出小鼠与人两者之间在其羧基端有相同的EAQGPK六肽,进一步证实用抗人微管蛋白βⅢ单抗可检测小鼠神经干细胞分化成的神经元细胞,免疫组化鉴定显示小鼠神经干细胞在体积分数为1%胎牛血清(FBS)诱导下,可分化成神经元,星形胶质细胞,少突胶质细胞,同时培养了13周龄胎儿脑来源的人类神经干细胞,用特异性的抗人nestin抗体鉴定,全部为阳性细胞,但它们经诱导分化产生较不同寻常的细胞分化细胞和分化程度,在生长因子减半和1%FBS诱导条件下可分化为神经元和星形胶质细胞,而无少突胶质细胞分化,NF单抗检测证实为早期分化的神经元。  相似文献   

17.
We have previously identified an E. coli determinant, ibeB gene locus contributing to invasion of human brain microvascular endothelial cells. In the present study, we established embryonic stem (ES) cell lines overexpressing IbeB and found that exogenic ibeB gene could start-up expression of a neural stem cell specific marker, nestin, and give rise to polar changes. In analysis of IbeB location, it was found that GFP-IbeB fusion protein targeted at the ES cell nucleus. These data suggests that ibeB gene may play an important role in the regulation of nestin expression.  相似文献   

18.
19.
The gene for the atypical NOTCH ligand delta-like homologue 1 (Dlk1) encodes membrane-bound and secreted isoforms that function in several developmental processes in vitro and in vivo. Dlk1, a member of a cluster of imprinted genes, is expressed from the paternally inherited chromosome. Here we show that mice that are deficient in Dlk1 have defects in postnatal neurogenesis in the subventricular zone: a developmental continuum that results in depletion of mature neurons in the olfactory bulb. We show that DLK1 is secreted by niche astrocytes, whereas its membrane-bound isoform is present in neural stem cells (NSCs) and is required for the inductive effect of secreted DLK1 on self-renewal. Notably, we find that there is a requirement for Dlk1 to be expressed from both maternally and paternally inherited chromosomes. Selective absence of Dlk1 imprinting in both NSCs and niche astrocytes is associated with postnatal acquisition of DNA methylation at the germ-line-derived imprinting control region. The results emphasize molecular relationships between NSCs and the niche astrocyte cells of the microenvironment, identifying a signalling system encoded by a single gene that functions coordinately in both cell types. The modulation of genomic imprinting in a stem-cell environment adds a new level of epigenetic regulation to the establishment and maintenance of the niche, raising wider questions about the adaptability, function and evolution of imprinting in specific developmental contexts.  相似文献   

20.
Astroglia induce neurogenesis from adult neural stem cells   总被引:116,自引:0,他引:116  
Song H  Stevens CF  Gage FH 《Nature》2002,417(6884):39-44
During an investigation of the mechanisms through which the local environment controls the fate specification of adult neural stem cells, we discovered that adult astrocytes from hippocampus are capable of regulating neurogenesis by instructing the stem cells to adopt a neuronal fate. This role in fate specification was unexpected because, during development, neurons are generated before most of the astrocytes. Our findings, together with recent reports that astrocytes regulate synapse formation and synaptic transmission, reinforce the emerging view that astrocytes have an active regulatory role--rather than merely supportive roles traditionally assigned to them--in the mature central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号