首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
机械合金化法制备Co掺杂β-FeSi_2及性能分析   总被引:1,自引:0,他引:1  
用机械合金化法成功制备了配比为Fe1-xCoxSi2(x=0.04,0.05,0.06)的N型β-FeSi2基热电材料.研究结果表明:在球料质量比为80∶ 1,球磨速度为400 r/min的条件下,球磨20 h的粉体发生完全合金化,生成β-FeSi2,α-Fe2Si5和ε-FeSi的合金相;经过1 373 K退火2 h,再结合1 073 K退火2 h的热处理后,可完全获得晶粒细小的N型块状β-FeSi2;随着测量温度的升高,Fe1-xCoxSi2试样的Seebeck系数α和电导率σ增大,热导率κ降低,无量纲热电优值ZT随温度升高而明显增大;随着掺杂量的增加,材料的电导率σ增大,热导率κ降低,σ/κ比值得到提高,但Seebeck系数α降低;当T=695 K,掺杂量x=0.04时,Seebeck系数α的最大绝对值为227 μV/K;具有最佳热电优值的材料为Fe0.95Co0.05Si2.  相似文献   

2.
采用机械合金化和热处理工艺成功制备了β-FeSi2样品,用X射线衍射(XRD)和扫描电子显微镜(SEM)对样品的结构与形貌进行分析,探讨球磨时间和热处理工艺对合金化过程的影响.结果显示,在球磨过程中,钢球把Fe粉挤压成块状粉体,把脆性的Si粉破碎成细小的颗粒状.随着球磨时间的增加,Fe粉和Si粉形成片层状结构,然后Fe和Si通过原子扩散实现合金化.为了缩短退火时间并促进β-FeSi2的形成,可以加入少量的Cu.当Fe与Si的原子比为1∶3,Cu的质量分数为3%时,在800℃退火120h可以得到较为纯净的金属间化合物β-FeSi2.  相似文献   

3.
用机械合金化法研制出了β-FeSi2热电材料.研究了球料比、球磨时间等机械合金化参数以及热处理工艺对Fe-Si合金相变的影响.采用X射线衍射仪(XRD)及扫描电子显微镜(SEM)分析了Fe-Si合金相组成及微观形貌.研究结果表明:在球料比为80∶1、球磨速度为450r/min的条件下,球磨5h后的粉体的组成相为α-Fe2Si5,β-FeSi2和ε-FeSi;随着球磨时间的延长,Fe-Si合金粉体的颗粒度变细,成分更加均匀,β-FeSi2的含量逐渐增多;增加球料比也能使Fe-Si合金粉体中的β-FeSi增多;经800℃热处理保温0.5h后可以获得单相β-FeSi.  相似文献   

4.
用机械合金化法研制出了a-FeSi2热电材料.研究了球料比、球磨时间等机械合金化参数以及热处理工艺对Fe-Si合金相变的影响.采用x射线衍射仪(XRD)及扫描电子显微镜(SEM)分析了Fe-Si合金相组成及微观形貌.研究结果表明:在球料比为80:1、球磨速度为450 r/min的条件下,球磨5 h后的粉体的组成相为á-Fe2Si5,a-FeSi2和?-FeSi;随着球磨时间的延长,Fe-Si合金粉体的颗粒度变细,成分更加均匀,a-FeSi2的含量逐渐增多;增加球料比也能使Fe-Si合金粉体中的a-FeSi2增多;经800 ℃热处理保温0.5 h后可以获得单相a-FeSi2.  相似文献   

5.
固液反应球磨制备Al-Cu-Fe与Al-Si-Fe三元合金   总被引:1,自引:0,他引:1  
利用固液反应球磨技术,采用Fe球球磨液态Al-Cu和A1-Si三元合金,研究了Al-Cu-Fe和Al-Si-Fe三元合金相形成规律.在923 K球磨液态的Al-33.2%Cu共晶合金,球磨48 h后,得到Al13Cu4Fe3的固相粉末;在943 K球磨Al-54%Cu(Al2Cu)合金熔体,球磨24 h后,Al2Cu的液相消失,得到了固相的Al65Cu20Fe15和Al13Cu4Fe3混合粉末;在963 K球磨Al-7%Si亚共晶合金熔体,球磨48 h后,Al-Si液相消失,得到固态的Al8Fe2Si合金粉末;在963 K球磨Al-12.6%Si共晶合金熔体,球磨48 h后,Al-Si的液相消失,得到固态的Al8Fe2Si粉末;在1133 K球磨Al-30%Si过共晶合金熔体,球磨24 h后,Al-Si的液相消失,得到固态的Al3FeSi合金粉末.在上述球磨中,若加入一定量的Fe粉,将加速反应进程.固液反应球磨产物是在打击剥离的过程中制得的.  相似文献   

6.
研究了Fe和Si(原子比为:Fe∶Si=3∶1)混和粉末在高能球磨过程中的物相转变和形貌变化.结果表明,球磨可以生成α-Fe(Si)固溶体,而没有生成Fe3Si金属间化合物,球磨后的固溶体粉末表现为典型的层状结构.球磨不同时间所得到的固溶体粉末在860℃下退火1h可以生成DO3型的Fe3Si金属间化合物.对球磨20h的混和粉末在1100℃、15~20MPa下热压烧结15min也可以得到DO3型结构的Fe3Si金属间化合物,延长烧结时间,Fe3Si的有序度会下降,密度有所提高.  相似文献   

7.
Fe60 Co20 C20超细合金粉末的结构和磁性能研究   总被引:1,自引:0,他引:1  
采用机械合金化方法制备出Fe60Co20C20超细合金粉末,对不同球磨时间的样品进行X射线衍射和磁滞回线的测量.X射线衍射分析结果表明:样品在球磨20 h后开始部分非晶化,在Fe-Co合金中加入C可促使其形成非晶;样品的晶粒尺寸随球磨时间的增加而减小,在一定的机械合金化条件下可获得Fe60Co20C20的非晶态超细合金粉末.VSM研究结果表明:球磨初期,样品的矫顽力增加;球磨20 h后,随着晶粒尺寸的降低矫顽力降低.机械球磨后晶粒尺寸是影响样品磁性能的主要因素.  相似文献   

8.
采用机械合金化方法制备了非晶态Fe2P化合物.在1273K下晶化处理5h,得到晶态Fe2P二元化合物,通过X射线衍射和磁性测量分析了样品的晶体结构和磁性能.X射线衍射结果表明:随着球磨时间的增加,Fe、P粉末混合物的颗粒度逐渐减小,当球磨时间增加到100h时,衍射峰基本消失;经过退火的样品形成单一的Fe2P六角结构,空间群为P-62m.磁性测量结果表明:随着温度的升高,Fe2P化合物经历了由铁磁到顺磁的转变过程,居里温度为290K;在1.5T的磁场变化下,Fe2P化合物的最大磁熵变为0.74J/(kg.K),并且具有较大的半峰宽.  相似文献   

9.
机械合金化制备Fe-B-Si纳米晶粉末   总被引:3,自引:0,他引:3  
该文采用机械合金化方法制备Fe50B14Si36合金纳米晶材料。球磨过程中对该合金进行取样,通过X射线衍射分析,及晶粒尺寸和点阵常数的计算,发现该合金在球磨300h前晶粒尺寸迅速下降,能够实现纳米化;球磨时间小于300h时材料的矫顽力增加,而当球磨时间超过300h时矫顽力下降,材料的软磁性能增强。  相似文献   

10.
使用机械合成法制备了MnFeP0.6Si0.25Ge0.15粉末样品,研究了试样颗粒大小和半峰宽随球磨时间的变化关系.X射线粉末衍射分析表明,该样品退火后为Fe2P结构,样品密度ρ=6.655 g/cm3,颗粒大小D=43.2 nm,晶格畸变量Δd/d=0.053 818,表明在球磨过程中存在一定的晶格畸变.球磨100 h后,试样颗粒大小达到纳米量级.  相似文献   

11.
采用机械合金化法和固态反应法制备了Fe3P化合物,用X-射线衍射确定样品的晶体结构,结果表明,随着球磨时间的增加,Fe、P混合粉末的颗粒度逐渐减小,当球磨时间增加到100h时,衍射峰基本消失,混合物呈现非晶态.在1273K下退火70h后.混合粉末样品形成单一的Ni3P型四角结构,空间群为1-4.  相似文献   

12.
采用机械合金化技术制备了系列Fe60N i40样品,用XRD(X-ray d iffraction)和SEM(scann ing electronm icrosope)方法,分析了Fe-N i合金在形成纳米状态过程中的物相变化,并用光谱分析测量了样品中的杂质含量。结果表明:球磨2 h,样品仍然保持Fe、N i元素各自的晶体结构,但X射线衍射峰强度明显降低、宽度增加;球磨8~20 h,bcc结构α-Fe的特征峰基本消失,只有fcc结构N i的衍射峰清晰可辨,表明已形成Fe-N i固溶合金,粒度达到纳米级,说明机械合金化是制备纳米材料的有效方法;球磨40~100 h,N i的特征峰与球磨8~20 h相比向高角方向移动了0.5~°0.7,°并且在衍射角2θ为64.8°和82.0°附近出现了类似-αFe的(200)和(211)晶面衍射峰。通过分析计算发现,除了球磨介质污染,fcc结构的Fe-N i合金又发生了新的结构相变。  相似文献   

13.
采用机械合金化方法制备了Fe i Si,Fe Co Si三元系合金,利用X射线衍射仪研究了合金化过程中的相变行为.结果表明,Fe40Ni40Si20经36h球磨可形成αFe(bcc)和γFe(fcc)两相混合固溶体,继续球磨,过饱和α相逐渐分解并向γ相转化,72h后可得单相γFe过饱和固溶体.Fe40Co40Si20经36h可得αFe过饱和固溶体,继续球磨未发现新相生成.  相似文献   

14.
以Fe粉与Si粉为混合粉原料,研究经机械球磨、退火热处理后混合粉的形貌、结构与恒电流充放电性能,同时对比研究Si-Fe合金粉的性能.研究结果表明:混合粉原料经过高能机械球磨,生成了Si-Fe合金相,而Si-Fe合金的生成改善了Si作为锂离子电池负极材料的循环性能;与工业级Si-Fe合金负极材料相比,合金化程度影响了合金材料的电化学性能,合金化程度越高,合金材料电化学性能越好;而退火热处理也可以在一定程度上改善合金材料的脱嵌锂性能.  相似文献   

15.
采用X射线衍射(XRD)、扫描电子显微镜(SEM)、差热分析仪(DTA)等研究了Al70Fe25Ni5元素混合粉末在机械合金化过程中的结构演变及热稳定性.结果表明:球磨0.5h后有部分非晶生成,球磨5h后的粉体,退火处理后生成Al5Fe2和Al3Ni2金属间化合物.球磨500h后得到纳米金属间化合物.  相似文献   

16.
利用XAFS和XRD技术,研究机械合金化方法制备的Fe30Cu70二元体系的局域环境结构随球磨时间的变化.当球料比为401时,球磨5h,XRD结果表明bcc结构α-Fe相的衍射峰几乎消失,只有fcc结构Fe30Cu70合金相的衍射峰存在,随着球磨时间的增加,fcc结构Fe30Cu70合金相的晶格略有膨胀,且晶格参数逐渐增大.XAFS结果显示在机械合金化过程中,Fe30Cu70样品的Fe原子的近邻结构与Cu原子的近邻结构有不同的变化规律,Cu原子周围的局域晶格结构受球磨影响不大,但Fe原子周围的局域晶格结构形变较大,其无序度随时间增加而明显增大.所以,机械球磨后形成的Fe30Cu70合金并不是组成均匀的过饱和固溶体,其中既有Cu原子浓度大于化学计量比的fcc结构Cu富集区,又有Fe原子浓度大于化学计量比的fcc结构Fe富集区.  相似文献   

17.
采用机械合金化附加后续的热处理工艺,制备了2个系列不同组分的Al-Cu-Fe合金粉末,使用X射线衍射(XRD)结构分析技术研究一定的球磨时间及退火条件下粉末组分对准晶形成的影响.研究结果表明,Al-Cu-Fe二十面体准晶的形成对原始混合粉末的组分很敏感,在相同的球磨时间及退火条件下,Al70Cu20Fe10是形成准晶的最佳组分.  相似文献   

18.
作者对采用非质量分离离子束注入沉积法(IBD)在Si(100)上制备的β-FeSi2薄膜进行了研究,通过X射线衍射(XRD)和扫描电镜(SEM)以及原子力显微镜(AFM)分析表明:当退火温度在600℃和700℃附近时有利于β-FeSi2的形成。  相似文献   

19.
利用XRD(X射线衍射)和XAFS(X射线吸收精细结构),研究了机械合金化Fe60Ni40二元金属合金的微结构随球磨时间的变化情况.结果表明:球磨5h,α-Fe和金属Ni的混合物开始形成合金,样品保持原来的bcc和fcc结构;球磨20h,α-Fe的特征配位峰完全消失,样品为比较均匀的fcc结构的固溶体;球磨时间增至40h时,Fe原子的近邻结构又有了新的变化,是由多种物态组成的复相固溶体.用柯西公式计算的结果表明:随着球磨时间的增加,晶粒不断细化,晶格畸变加剧,Ni相的晶格常数与Fe60Ni40合金的物相同步变化.这说明机械合金化过程中,晶格畸变引起的晶格常数的变化是相变的重要因素.  相似文献   

20.
为了准确辨别AlCuFe准晶体(QC)形成的相变过程,进而探索其形成机理,采用X射线吸收精细结构(XAFS)定量分析技术,计算不同球磨时间 Al70Cu20Fe10合金中的Cu原子,以及700 ℃退火后的Cu和Fe原子的局域结构参数,并与X射线衍射(XRD)分析进行比对。结果表明,经过不同球磨时间,样品中Al和Cu首先形成Al2Cu金属间化合物,进而转化为Cu9Al4,Fe原子仍然是原来的体心立方(bcc)α-Fe结构。α-Fe与Al和Al2Cu经过退火处理化合为Al7Cu2Fe化合物,进而转变为QC;而长时间球磨产生的Cu9Al4退火后化合为稳定的Al(Cu,Fe)固溶体,不会形成QC。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号