首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
用机械合金化法研制出了β-FeSi2热电材料.研究了球料比、球磨时间等机械合金化参数以及热处理工艺对Fe-Si合金相变的影响.采用X射线衍射仪(XRD)及扫描电子显微镜(SEM)分析了Fe-Si合金相组成及微观形貌.研究结果表明:在球料比为80∶1、球磨速度为450r/min的条件下,球磨5h后的粉体的组成相为α-Fe2Si5,β-FeSi2和ε-FeSi;随着球磨时间的延长,Fe-Si合金粉体的颗粒度变细,成分更加均匀,β-FeSi2的含量逐渐增多;增加球料比也能使Fe-Si合金粉体中的β-FeSi增多;经800℃热处理保温0.5h后可以获得单相β-FeSi.  相似文献   

2.
采用机械合金化结合氩气退火法成功制备了β-FeSi2热电材料,并用XRD、SEM对不同球磨时间后的Fe-Si粉体进行结构及形貌表征.试验结果表明:随着球磨时间的延长,颗粒不断细化,最后可得到Fe- Si纳米晶合金;球磨20 h后,Fe衍射峰宽化而Si衍射峰逐渐减弱,形成α-Fe(Si)过饱和固溶体;球磨120 h后出现合金ε-FeSi、β-FeSi2相;调整Si/Fe原子比例为2.3,对球磨120h后合金粉末在800℃退火20h,可以得到单相β-FeSi2热电材料.  相似文献   

3.
介绍了β-FeSi2的结构,β-FeSi2薄膜的光电特性以及β-FeSi2薄膜在太阳能电池方面的应用,指出了需要加强研究的方面.  相似文献   

4.
综述了半导体β-FeSi2薄膜的制备、薄膜的表征、能带的特点、电学、光学性质等方面的研究进展,讨论了几种用于Si衬底上外延生长β-FeSi2薄膜方法的优缺点,分析了制备高品质β-FeSi2薄膜所存在的理论和技术上的难题,展望了β-FeSi2薄膜作为新光电材料的应用前景.  相似文献   

5.
采用机械合金化和热处理工艺成功制备了β-FeSi2样品,用X射线衍射(XRD)和扫描电子显微镜(SEM)对样品的结构与形貌进行分析,探讨球磨时间和热处理工艺对合金化过程的影响.结果显示,在球磨过程中,钢球把Fe粉挤压成块状粉体,把脆性的Si粉破碎成细小的颗粒状.随着球磨时间的增加,Fe粉和Si粉形成片层状结构,然后Fe和Si通过原子扩散实现合金化.为了缩短退火时间并促进β-FeSi2的形成,可以加入少量的Cu.当Fe与Si的原子比为1∶3,Cu的质量分数为3%时,在800℃退火120h可以得到较为纯净的金属间化合物β-FeSi2.  相似文献   

6.
机械合金化法制备Co掺杂β-FeSi_2及性能分析   总被引:1,自引:0,他引:1  
用机械合金化法成功制备了配比为Fe1-xCoxSi2(x=0.04,0.05,0.06)的N型β-FeSi2基热电材料.研究结果表明:在球料质量比为80∶ 1,球磨速度为400 r/min的条件下,球磨20 h的粉体发生完全合金化,生成β-FeSi2,α-Fe2Si5和ε-FeSi的合金相;经过1 373 K退火2 h,再结合1 073 K退火2 h的热处理后,可完全获得晶粒细小的N型块状β-FeSi2;随着测量温度的升高,Fe1-xCoxSi2试样的Seebeck系数α和电导率σ增大,热导率κ降低,无量纲热电优值ZT随温度升高而明显增大;随着掺杂量的增加,材料的电导率σ增大,热导率κ降低,σ/κ比值得到提高,但Seebeck系数α降低;当T=695 K,掺杂量x=0.04时,Seebeck系数α的最大绝对值为227 μV/K;具有最佳热电优值的材料为Fe0.95Co0.05Si2.  相似文献   

7.
飞秒脉冲激光沉积法的动力学过程实验研究   总被引:2,自引:0,他引:2  
用钛宝石飞秒激光器将最大峰值功率密度为1.14×1013 W/cm2的激光作用在Bi4Ti3O12陶瓷靶、Cu靶、FeSi2合金靶上,研究产生等离子体羽的颜色和形状一般规律:内芯均为白色对应于高温高压等离子体;紧跟内芯的是等离子体的复合形成中性粒子的区域;颜色单一的外层是温度较低的中性粒子和低温等离子体区.飞秒脉冲激光产生的等离子体呈cos4θ的角分布.在准分子脉冲激光沉积下衬底温度为500℃时-FeSi2薄膜的生长模式是Volmer-Weber模式,衬底温度为550℃时β-FeSi2薄膜的生长是Stranski-Krastanov模式.实验发现飞秒激光沉积技术能解决传统PLD法中产生大尺寸微滴的缺陷.  相似文献   

8.
热电元件具有热电发电和电子制冷制热功能,其结构简单,无运动部件,少污染和噪音,是当今国际上竞相研究的热电能变换方法.FeSi2(β相)被认为是用于高温火焰的经济热电材料.它原料资源丰富,价格低廉,选用低纯度工业原料对热电性能无明显影响.然而β-FeSi2的制备  相似文献   

9.
The FeSi2 target alloy was fabricated by conventional powder metallurgy technology, and then, β-FeSi2 thin films was successfully prepared by pulsed laser deposition (PLD). X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were used to characterize the structure, composition, and their changes in the process of β-FeSi2 preparation. In addition, a laser sintering process was also employed to prepare FeSi2 alloy. The analysis of radiation heat transfers in different-sized FeSi2 melt indicates that the cooling rate of the melt depends on the size, i.e., the cooling rate of the micron sized melt is 103 times greater than that of the millimeter-sized melt. The product α-FeSi2 by laser sintering and β-FeSi2 by PLD reveals the different phase transition process in crystallization of milli-meter-sized and micron-sized (or submicron-sized) FeSi2 melt. The results of PLD preparation process shows that β-FeSi2 could be pre-pared through a liquid-phase sintering, followed by a rapid cooling.  相似文献   

10.
粉末烧结法合成FeSi_2合金的反应机理研究   总被引:1,自引:0,他引:1  
对于按Si∶Fe=2∶1充分混合均匀的Fe-Si粉体,在传统粉末烧结FeSi2合金的过程中,随着温度升高,在690℃附近,首先发生的反应是:Fe+Si=FeSi,在850℃附近,发生的是FeSi和Si反应生成α相FeSi2.常规的固相烧结和激光烧结两种制备方法均证实:由高温向低温冷却的过程中α相的FeSi2均没有完成向β相的转变;在1 200℃附近Fe-Si处于液相状态时,Fe+2Si=FeSi2的反应是优先进行的;激光烧结可以直接生产α-FeSi2.  相似文献   

11.
采用基于密度泛函理论的赝势平面波方法对含Si空位的β-FeSi2 缺陷体系的几何结构、能带结构、态密度和光学性质进行计算。结果表明,Si空位引起了晶格结构发生畸变,能带变窄,在价带与导带之间形成一个独立能带,费米面整体向上发生微小偏移,形成了P型半导体。对光学性质的研究发现,由于Si空位的介入使其邻近原子电子结构发生变化, 静态介电常数 (0)增大; 的第一峰的位置向低能端移动,吸收系数发生微小红移。  相似文献   

12.
本文采用快速升温(800℃/min以上)和慢速升温(5℃/min)两种方法合成β-C_2S。测定了两种方法合成的β-C_2S的水化速度、晶粒尺寸、微观应力、内比表面积等。结果表明,快速升温合成的β-C_2S的水化活性高。其活性高的原因主要是快速升温合成的β-C_2S晶粒细小,比表面积大,晶体的微观应力大。  相似文献   

13.
研究了TNM(Ti-Al-Nb-Mo)合金中热处理条件与显微组织、力学性能的关联.将合金样品先在1 270℃下退火后,再分别于800℃保温500、1 000和2 000 h.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和显微硬度计分析了具有不同二次退火时间样品的物相、微观形貌及显微硬度的变化.结果表明:随着退火时间的延长,(α2+γ)层片团边界逐渐粗化,界面处出现更多的βo和γ组成的网络状组织;同时在α2层片内出现更多的纳米级βo颗粒,使单个α2层片中出现α2/βo/α2结构.由于βo颗粒的硬度较大,且层片内的α2/βo界面可以阻碍位错的运动,所以TNM合金的硬度随着二次退火时间的延长而有所提高.  相似文献   

14.
β-磷酸三钙多孔生物陶瓷的制备与表征   总被引:7,自引:0,他引:7  
该研究从β-磷酸三钙(β-FCP)粉末制备开始,通过改变其组成和改进其制备工艺,制取了性能优良的β-TCP多孔生物陶瓷。采用热重—差示扫描量热法(TG—DSC)、X射线衍射(XRD)、电子显微镜(TEM)、扫描电子显微镜(SEM)等现代分析测试技术对其微观结构、组织和性能进行了分析和研究。结果表明:烧结过程中在200~400℃之间的缓慢升温,能够使硬脂酸充分燃烧并放出CO2和水蒸气,从而在陶瓷体中形成疏松珊瑚状多孔结构;CaO-P2O5系玻璃粘结剂经过470℃和570℃的晶化处理,更多地转变为微晶玻璃,在保证β-TCP多孔陶瓷降解性的同时能有效提高强度,使其接近人体松质骨的强度,从而在骨缺损区提供一定的支撑作用。  相似文献   

15.
通过优化β-环糊精-苯佐卡因包合物(β-CD-benzocaine,β-CD-ben)的制备条件,研究其对苯佐卡因水解速度的影响。具体以β-环糊精、苯佐卡因为原料,水溶液搅拌法为制备方法,在不同投料比(苯佐卡因:β-CD分别为1∶0. 5、1∶1、1∶2和1∶3)、搅拌时间(3 h、5 h和8 h)、包合温度(40℃、55℃和80℃)、干燥后产物洗涤剂(甲醇、乙醇和异丙醇)的条件下,优化包合物的最佳制备条件,即投料比,苯佐卡因∶β-CD=1∶1,搅拌时间5 h,包合温度55℃,干燥后产物洗涤剂选择异丙醇。通过形态表观、电镜分析及X-射线衍射分析对包合物进行表征,并考察5×10﹣6g/mL的苯佐卡因溶液和β-CD-ben包合物溶液在碱性条件下的水解速度。结果表明:优化条件下制备的β-CD-ben包合物在一定程度上降低了苯佐卡因的水解程度。该研究结果对β-CD-ben包合物制备中的影响因素进行了补充,为增加不稳定药物稳定性提供了一定借鉴。  相似文献   

16.
用机械合金化法研制出了a-FeSi2热电材料.研究了球料比、球磨时间等机械合金化参数以及热处理工艺对Fe-Si合金相变的影响.采用x射线衍射仪(XRD)及扫描电子显微镜(SEM)分析了Fe-Si合金相组成及微观形貌.研究结果表明:在球料比为80:1、球磨速度为450 r/min的条件下,球磨5 h后的粉体的组成相为á-Fe2Si5,a-FeSi2和?-FeSi;随着球磨时间的延长,Fe-Si合金粉体的颗粒度变细,成分更加均匀,a-FeSi2的含量逐渐增多;增加球料比也能使Fe-Si合金粉体中的a-FeSi2增多;经800 ℃热处理保温0.5 h后可以获得单相a-FeSi2.  相似文献   

17.
低酸度介质中铀酰和dl-酒石酸的络合行为   总被引:1,自引:1,他引:0  
本文用阳离子交换法研究了低酸度介质中不同温度下 UO_2~(++)-dl-酒石酸的络合形成,证明在溶液中存在有 UO_2 HL~-,较高温度时还发现存在有 UO_2HL(H_2L)~(3-),在25、35、45和55℃时,β_1为1.5×10~(-6)、1.1×10~(-6)、6.6×10~(-7)、3.8×10~(-7);在45°C、55℃时,β_2为2.0×10~(-3)、4.2×10~(-3),求得△H(β_1)是—4.8千卡/克分子.  相似文献   

18.
利用液相分相机理制备了β-磷酸三钙/明胶复合小球.以四水硝酸钙(Ca(NO3)2.4H2O)和磷酸三乙酯(C6H15O4P)为初始原料制备羟基磷灰石溶胶和-βTCP溶胶,将-βTCP小球压成一定厚度的试片,烧结后首先放入-βTCP溶胶中浸渍,然后放入HAP溶胶中重复浸渍、热处理数次,在1 000℃下烧结,制备-βTCP/HAP复合陶瓷.采用扫描电镜(SEM)对复合陶瓷片进行了形貌分析,通过Testometric M350-20KN对样品的压缩强度进行了测试.实验结果表明,样品在1 150℃下保温2 h所烧结的陶瓷样品的压缩强度可达到24 MPa.  相似文献   

19.
利用一种新的材料动态行为模拟方法,模拟了Ti-4.5Al-5Mo-1.5Arα+β钛合金的热加工动态冶金过程。测定其预先形成的α+β和β两种组织在热加工过程的行为,得出最优的热加工条件为870℃和ε=10~(-3)s~(-1)。若提高应变速率时,对α+β组织则以940℃以上和ε=10°s~(-1)为好;对β组织则以900℃以上和ε=10~(-1)s~(-1)为好。  相似文献   

20.
以粉煤灰和炭黑为原料,采用碳热还原氮化法在1 350~1 550℃下保温6 h合成出不同组成的Sialon环境材料.研究了合成温度对材料相组成的影响,观察了其显微结构,并分析了粉煤灰的碳热还原氮化过程.研究结果表明:合成温度对材料的相组成影响显著;提高合成温度有利于莫来石的分解和Sialon的生成,通过控制加热温度可以合成不同组成的Sialon材料;1 350~1 400℃,1 450~1 500℃和1 550℃保温6 h可以分别合成(O′+β)-Sialon/莫来石、(X+β)-Sialon/刚玉和β-Sialon材料;在1 550℃下合成β-Sialon的平均粒径约为2~3μm.粉煤灰的碳...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号