首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A resource for large-scale RNA-interference-based screens in mammals   总被引:2,自引:0,他引:2  
Gene silencing by RNA interference (RNAi) in mammalian cells using small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) has become a valuable genetic tool. Here, we report the construction and application of a shRNA expression library targeting 9,610 human and 5,563 mouse genes. This library is presently composed of about 28,000 sequence-verified shRNA expression cassettes contained within multi-functional vectors, which permit shRNA cassettes to be packaged in retroviruses, tracked in mixed cell populations by means of DNA 'bar codes', and shuttled to customized vectors by bacterial mating. In order to validate the library, we used a genetic screen designed to report defects in human proteasome function. Our results suggest that our large-scale RNAi library can be used in specific, genetic applications in mammals, and will become a valuable resource for gene analysis and discovery.  相似文献   

2.
RNA interference (RNAi) is an evolutionarily conserved defence mechanism whereby genes are specifically silenced through degradation of messenger RNAs; this process is mediated by homologous double-stranded (ds)RNA molecules. In invertebrates, long dsRNAs have been used for genome-wide screens and have provided insights into gene functions. Because long dsRNA triggers a nonspecific interferon response in many vertebrates, short interfering (si)RNA or short hairpin (sh)RNAs must be used for these organisms to ensure specific gene silencing. Here we report the generation of a genome-scale library of endoribonuclease-prepared short interfering (esi)RNAs from a sequence-verified complementary DNA collection representing 15,497 human genes. We used 5,305 esiRNAs from this library to screen for genes required for cell division in HeLa cells. Using a primary high-throughput cell viability screen followed by a secondary high content videomicroscopy assay, we identified 37 genes required for cell division. These include several splicing factors for which knockdown generates mitotic spindle defects. In addition, a putative nuclear-export terminator was found to speed up cell proliferation and mitotic progression after knockdown. Thus, our study uncovers new aspects of cell division and establishes esiRNA as a versatile approach for genomic RNAi screens in mammalian cells.  相似文献   

3.
4.
5.
Elbashir SM  Harborth J  Lendeckel W  Yalcin A  Weber K  Tuschl T 《Nature》2001,411(6836):494-498
  相似文献   

6.
RNA干涉及其在肿瘤研究中的应用   总被引:1,自引:0,他引:1  
RNAi是双链RNA介导的转录后基因沉默的过程,是一种高效的高特异性抑制基因表达的新途径。通过双链小干涉RNA(siRNA)与一系列蛋白质结合形成siRNA诱导的沉默复合体(RISC)并活化,然后,RISC对靶基因进行识别、降解。与反义方法相比,siRNA具有更好的抑制效果。RNAi的应用将为癌症的基因治疗提供新的方法。  相似文献   

7.
Cancer cells adapt their metabolic processes to drive macromolecular biosynthesis for rapid cell growth and proliferation. RNA interference (RNAi)-based loss-of-function screening has proven powerful for the identification of new and interesting cancer targets, and recent studies have used this technology in vivo to identify novel tumour suppressor genes. Here we developed a method for identifying novel cancer targets via negative-selection RNAi screening using a human breast cancer xenograft model at an orthotopic site in the mouse. Using this method, we screened a set of metabolic genes associated with aggressive breast cancer and stemness to identify those required for in vivo tumorigenesis. Among the genes identified, phosphoglycerate dehydrogenase (PHGDH) is in a genomic region of recurrent copy number gain in breast cancer and PHGDH protein levels are elevated in 70% of oestrogen receptor (ER)-negative breast cancers. PHGDH catalyses the first step in the serine biosynthesis pathway, and breast cancer cells with high PHGDH expression have increased serine synthesis flux. Suppression of PHGDH in cell lines with elevated PHGDH expression, but not in those without, causes a strong decrease in cell proliferation and a reduction in serine synthesis. We find that PHGDH suppression does not affect intracellular serine levels, but causes a drop in the levels of α-ketoglutarate, another output of the pathway and a tricarboxylic acid (TCA) cycle intermediate. In cells with high PHGDH expression, the serine synthesis pathway contributes approximately 50% of the total anaplerotic flux of glutamine into the TCA cycle. These results reveal that certain breast cancers are dependent upon increased serine pathway flux caused by PHGDH overexpression and demonstrate the utility of in vivo negative-selection RNAi screens for finding potential anticancer targets.  相似文献   

8.
The FBXW7/hCDC4 gene encodes a ubiquitin ligase implicated in the control of chromosome stability. Here we identify the mouse Fbxw7 gene as a p53-dependent tumour suppressor gene by using a mammalian genetic screen for p53-dependent genes involved in tumorigenesis. Radiation-induced lymphomas from p53+/- mice, but not those from p53-/- mice, show frequent loss of heterozygosity and a 10% mutation rate of the Fbxw7 gene. Fbxw7+/- mice have greater susceptibility to radiation-induced tumorigenesis, but most tumours retain and express the wild-type allele, indicating that Fbxw7 is a haploinsufficient tumour suppressor gene. Loss of Fbxw7 alters the spectrum of tumours that develop in p53 deficient mice to include a range of tumours in epithelial tissues such as the lung, liver and ovary. Mouse embryo fibroblasts from Fbxw7-deficient mice, or wild-type mouse cells expressing Fbxw7 small interfering RNA, have higher levels of Aurora-A kinase, c-Jun and Notch4, but not of cyclin E. We propose that p53-dependent loss of Fbxw7 leads to genetic instability by mechanisms that might involve the activation of Aurora-A, providing a rationale for the early occurrence of these mutations in human cancers.  相似文献   

9.
A loss-of-function RNA interference screen for molecular targets in cancer   总被引:2,自引:0,他引:2  
Ngo VN  Davis RE  Lamy L  Yu X  Zhao H  Lenz G  Lam LT  Dave S  Yang L  Powell J  Staudt LM 《Nature》2006,441(7089):106-110
The pursuit of novel therapeutic agents in cancer relies on the identification and validation of molecular targets. Hallmarks of cancer include self-sufficiency in growth signals and evasion from apoptosis; genes that regulate these processes may be optimal for therapeutic attack. Here we describe a loss-of-function screen for genes required for the proliferation and survival of cancer cells using an RNA interference library. We used a doxycycline-inducible retroviral vector for the expression of small hairpin RNAs (shRNAs) to construct a library targeting 2,500 human genes. We used retroviral pools from this library to infect cell lines representing two distinct molecular subgroups of diffuse large B-cell lymphoma (DLBCL), termed activated B-cell-like DLBCL and germinal centre B-cell-like DLBCL. Each vector was engineered to contain a unique 60-base-pair 'bar code', allowing the abundance of an individual shRNA vector within a population of transduced cells to be measured using microarrays of the bar-code sequences. We observed that a subset of shRNA vectors was depleted from the transduced cells after three weeks in culture only if shRNA expression was induced. In activated B-cell-like DLBCL cells, but not germinal centre B-cell-like DLBCL cells, shRNAs targeting the NF-kappaB pathway were depleted, in keeping with the essential role of this pathway in the survival of activated B-cell-like DLBCL. This screen uncovered CARD11 as a key upstream signalling component responsible for the constitutive IkappaB kinase activity in activated B-cell-like DLBCL. The methodology that we describe can be used to establish a functional taxonomy of cancer and help reveal new classes of therapeutic targets distinct from known oncogenes.  相似文献   

10.
All viruses rely on host cell proteins and their associated mechanisms to complete the viral life cycle. Identifying the host molecules that participate in each step of virus replication could provide valuable new targets for antiviral therapy, but this goal may take several decades to achieve with conventional forward genetic screening methods and mammalian cell cultures. Here we describe a novel genome-wide RNA interference (RNAi) screen in Drosophila that can be used to identify host genes important for influenza virus replication. After modifying influenza virus to allow infection of Drosophila cells and detection of influenza virus gene expression, we tested an RNAi library against 13,071 genes (90% of the Drosophila genome), identifying over 100 for which suppression in Drosophila cells significantly inhibited or stimulated reporter gene (Renilla luciferase) expression from an influenza-virus-derived vector. The relevance of these findings to influenza virus infection of mammalian cells is illustrated for a subset of the Drosophila genes identified; that is, for three implicated Drosophila genes, the corresponding human homologues ATP6V0D1, COX6A1 and NXF1 are shown to have key functions in the replication of H5N1 and H1N1 influenza A viruses, but not vesicular stomatitis virus or vaccinia virus, in human HEK 293 cells. Thus, we have demonstrated the feasibility of using genome-wide RNAi screens in Drosophila to identify previously unrecognized host proteins that are required for influenza virus replication. This could accelerate the development of new classes of antiviral drugs for chemoprophylaxis and treatment, which are urgently needed given the obstacles to rapid development of an effective vaccine against pandemic influenza and the probable emergence of strains resistant to available drugs.  相似文献   

11.
Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.  相似文献   

12.
Retroviruses, acting as somatic cell insertional mutagens, have been widely used to identify cancer genes in the haematopoietic system and mammary gland. An insertional mutagen for use in other mouse somatic cells would facilitate the identification of genes involved in tumour formation in a wider variety of tissues. Here we report the ability of the Sleeping Beauty transposon to act as a somatic insertional mutagen to identify genes involved in solid tumour formation. A Sleeping Beauty transposon, engineered to elicit loss-of-function or gain-of-function mutations, transposed in all somatic tissues tested and accelerated tumour formation in mice predisposed to cancer. Cloning transposon insertion sites from these tumours revealed the presence of common integration sites, at known and candidate cancer genes, similar to those observed in retroviral mutagenesis screens. Sleeping Beauty is a new tool for unbiased, forward genetic screens for cancer genes in vivo.  相似文献   

13.
Friedman A  Perrimon N 《Nature》2006,444(7116):230-234
Receptor tyrosine kinase (RTK) signalling through extracellular-signal-regulated kinases (ERKs) has pivotal roles during metazoan development, underlying processes as diverse as fate determination, differentiation, proliferation, survival, migration and growth. Abnormal RTK/ERK signalling has been extensively documented to contribute to developmental disorders and disease, most notably in oncogenic transformation by mutant RTKs or downstream pathway components such as Ras and Raf. Although the core RTK/ERK signalling cassette has been characterized by decades of research using mammalian cell culture and forward genetic screens in model organisms, signal propagation through this pathway is probably regulated by a larger network of moderate, context-specific proteins. The genes encoding these proteins may not have been discovered through traditional screens owing, in particular, to the requirement for visible phenotypes. To obtain a global view of RTK/ERK signalling, we performed an unbiased, RNA interference (RNAi), genome-wide, high-throughput screen in Drosophila cells using a novel, quantitative, cellular assay monitoring ERK activation. Here we show that ERK pathway output integrates a wide array of conserved cellular processes. Further analysis of selected components-in multiple cell types with different RTK ligands and oncogenic stimuli-validates and classifies 331 pathway regulators. The relevance of these genes is highlighted by our isolation of a Ste20-like kinase and a PPM-family phosphatase that seem to regulate RTK/ERK signalling in vivo and in mammalian cells. Novel regulators that modulate specific pathway outputs may be selective targets for drug discovery.  相似文献   

14.
Forward genetic screens in model organisms have provided important insights into numerous aspects of development, physiology and pathology. With the availability of complete genome sequences and the introduction of RNA-mediated gene interference (RNAi), systematic reverse genetic screens are now also possible. Until now, such genome-wide RNAi screens have mostly been restricted to cultured cells and ubiquitous gene inactivation in Caenorhabditis elegans. This powerful approach has not yet been applied in a tissue-specific manner. Here we report the generation and validation of a genome-wide library of Drosophila melanogaster RNAi transgenes, enabling the conditional inactivation of gene function in specific tissues of the intact organism. Our RNAi transgenes consist of short gene fragments cloned as inverted repeats and expressed using the binary GAL4/UAS system. We generated 22,270 transgenic lines, covering 88% of the predicted protein-coding genes in the Drosophila genome. Molecular and phenotypic assays indicate that the majority of these transgenes are functional. Our transgenic RNAi library thus opens up the prospect of systematically analysing gene functions in any tissue and at any stage of the Drosophila lifespan.  相似文献   

15.
16.
Ma Y  Creanga A  Lum L  Beachy PA 《Nature》2006,443(7109):359-363
RNA interference (RNAi) in both plants and animals is mediated by small RNAs of approximately 21-23 nucleotides in length for regulation of target gene expression at multiple levels through partial sequence complementarities. Combined with widespread genome sequencing, experimental use of RNAi has the potential to interrogate systematically all genes in a given organism with respect to a particular function. However, owing to a tolerance for mismatches and gaps in base-pairing with targets, small RNAs could have up to hundreds of potential target sequences in a genome, and some small RNAs in mammalian systems have been shown to affect the levels of many messenger RNAs besides their intended targets. The use of long double-stranded RNAs (dsRNAs) in Drosophila, where Dicer-mediated processing produces small RNAs inside cells, has been thought to reduce the probability of such 'off-target effects' (OTEs). Here we show, however, that OTEs mediated by short homology stretches within long dsRNAs are prevalent in Drosophila. We have performed a genome-wide RNAi screen for novel components of Wingless (Wg) signal transduction in Drosophila S2R + cells, and found few, if any, legitimate candidates. Rather, many of the top candidates exert their effects on Wg response through OTEs on known pathway components or through promiscuous OTEs produced by tandem trinucleotide repeats present in many dsRNAs and genes. Genes containing such repeats are over-represented in candidate lists from published screens, suggesting that they represent a common class of false positives. Our results suggest simple measures to improve the reliability of genome-wide RNAi screens in Drosophila and other organisms.  相似文献   

17.
Modulation of HIV-1 replication by RNA interference   总被引:231,自引:0,他引:231  
Jacque JM  Triques K  Stevenson M 《Nature》2002,418(6896):435-438
  相似文献   

18.
探究KLF4沉默与经不同作用浓度阿霉素处理诱导的DNA损伤对肝癌HepG2细胞增殖凋亡的影响及其作用机制.应用RNA干扰技术,采用siRNA转染HepG2细胞以沉默KLF4基因.采用MTT法检测KLF4沉默前后对HepG2细胞增殖的影响,使用流式细胞术检测KLF4沉默前后对HepG2细胞周期变化影响,应用Western blot法检测转染前后HepG2细胞中KLF4蛋白及细胞周期相关蛋白表达变化.Western blot检测到高浓度的阿霉素促进KLF4的表达,并且低浓度的阿霉素可使得细胞停滞在G2/M期,高浓度的阿霉素则使部分细胞凋亡(19.31%).将KLF4沉默后,发现细胞生长变缓,低浓度的阿霉素处理后,细胞随时间增加而出现更多的细胞凋亡;高浓度的阿霉素处理后,细胞数明显减少,更多的细胞发生凋亡(28.89%),且在KLF4沉默前后均发现低浓度阿霉素促进p53与p21表达,高浓度阿霉素抑制其表达.阿霉素诱导的DNA损伤可提高KLF4的表达,KLF4依赖于DNA损伤激活的p53促进p21的表达,进而引起G1/S期细胞周期阻滞.沉默KLF4与阿霉素诱导的DNA损伤可协同抑制肝癌细胞的增殖、促进凋亡,其在肝癌细胞 HepG2中扮演十分重要的角色.  相似文献   

19.
20.
Damage to DNA in the cell activates the tumour-suppressor protein p53, and failure of this activation leads to genetic instability and a predisposition to cancer. It is therefore crucial to understand the signal transduction mechanisms that connect DNA damage with p53 activation. The enzyme known as DNA-dependent protein kinase (DNA-PK) has been proposed to be an essential activator of p53, but the evidence for its involvement in this pathway is controversial. We now show that the p53 response is fully functional in primary mouse embryonic fibroblasts lacking DNA-PK: irradiation-induced DNA damage in these defective fibroblasts induces a normal response of p53 accumulation, phosphorylation of a p53 serine residue at position 15, nuclear localization and binding to DNA of p53. The upregulation of p53-target genes and cell-cycle arrest also occur normally. The DNA-PK-deficient cell line SCGR11 contains a homozygous mutation in the DNA-binding domain of p53, which may explain the defective response by p53 reported in this line. Our results indicate that DNA-PK activity is not required for cells to mount a p53-dependent response to DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号