首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A resource for large-scale RNA-interference-based screens in mammals   总被引:2,自引:0,他引:2  
Gene silencing by RNA interference (RNAi) in mammalian cells using small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) has become a valuable genetic tool. Here, we report the construction and application of a shRNA expression library targeting 9,610 human and 5,563 mouse genes. This library is presently composed of about 28,000 sequence-verified shRNA expression cassettes contained within multi-functional vectors, which permit shRNA cassettes to be packaged in retroviruses, tracked in mixed cell populations by means of DNA 'bar codes', and shuttled to customized vectors by bacterial mating. In order to validate the library, we used a genetic screen designed to report defects in human proteasome function. Our results suggest that our large-scale RNAi library can be used in specific, genetic applications in mammals, and will become a valuable resource for gene analysis and discovery.  相似文献   

2.
RNA interference (RNAi) is a powerful new tool with which to perform loss-of-function genetic screens in lower organisms and can greatly facilitate the identification of components of cellular signalling pathways. In mammalian cells, such screens have been hampered by a lack of suitable tools that can be used on a large scale. We and others have recently developed expression vectors to direct the synthesis of short hairpin RNAs (shRNAs) that act as short interfering RNA (siRNA)-like molecules to stably suppress gene expression. Here we report the construction of a set of retroviral vectors encoding 23,742 distinct shRNAs, which target 7,914 different human genes for suppression. We use this RNAi library in human cells to identify one known and five new modulators of p53-dependent proliferation arrest. Suppression of these genes confers resistance to both p53-dependent and p19ARF-dependent proliferation arrest, and abolishes a DNA-damage-induced G1 cell-cycle arrest. Furthermore, we describe siRNA bar-code screens to rapidly identify individual siRNA vectors associated with a specific phenotype. These new tools will greatly facilitate large-scale loss-of-function genetic screens in mammalian cells.  相似文献   

3.
Ma Y  Creanga A  Lum L  Beachy PA 《Nature》2006,443(7109):359-363
RNA interference (RNAi) in both plants and animals is mediated by small RNAs of approximately 21-23 nucleotides in length for regulation of target gene expression at multiple levels through partial sequence complementarities. Combined with widespread genome sequencing, experimental use of RNAi has the potential to interrogate systematically all genes in a given organism with respect to a particular function. However, owing to a tolerance for mismatches and gaps in base-pairing with targets, small RNAs could have up to hundreds of potential target sequences in a genome, and some small RNAs in mammalian systems have been shown to affect the levels of many messenger RNAs besides their intended targets. The use of long double-stranded RNAs (dsRNAs) in Drosophila, where Dicer-mediated processing produces small RNAs inside cells, has been thought to reduce the probability of such 'off-target effects' (OTEs). Here we show, however, that OTEs mediated by short homology stretches within long dsRNAs are prevalent in Drosophila. We have performed a genome-wide RNAi screen for novel components of Wingless (Wg) signal transduction in Drosophila S2R + cells, and found few, if any, legitimate candidates. Rather, many of the top candidates exert their effects on Wg response through OTEs on known pathway components or through promiscuous OTEs produced by tandem trinucleotide repeats present in many dsRNAs and genes. Genes containing such repeats are over-represented in candidate lists from published screens, suggesting that they represent a common class of false positives. Our results suggest simple measures to improve the reliability of genome-wide RNAi screens in Drosophila and other organisms.  相似文献   

4.
Abundant evidence suggests that a unifying principle governing the molecular pathology of cancer is the co-dependent aberrant regulation of core machinery driving proliferation and suppressing apoptosis. Anomalous proteins engaged in support of this tumorigenic regulatory environment most probably represent optimal intervention targets in a heterogeneous population of cancer cells. The advent of RNA-mediated interference (RNAi)-based functional genomics provides the opportunity to derive unbiased comprehensive collections of validated gene targets supporting critical biological systems outside the framework of preconceived notions of mechanistic relationships. We have combined a high-throughput cell-based one-well/one-gene screening platform with a genome-wide synthetic library of chemically synthesized small interfering RNAs for systematic interrogation of the molecular underpinnings of cancer cell chemoresponsiveness. NCI-H1155, a human non-small-cell lung cancer line, was employed in a paclitaxel-dependent synthetic lethal screen designed to identify gene targets that specifically reduce cell viability in the presence of otherwise sublethal concentrations of paclitaxel. Using a stringent objective statistical algorithm to reduce false discovery rates below 5%, we isolated a panel of 87 genes that represent major focal points of the autonomous response of cancer cells to the abrogation of microtubule dynamics. Here we show that several of these targets sensitize lung cancer cells to paclitaxel concentrations 1,000-fold lower than otherwise required for a significant response, and we identify mechanistic relationships between cancer-associated aberrant gene expression programmes and the basic cellular machinery required for robust mitotic progression.  相似文献   

5.
6.
All viruses rely on host cell proteins and their associated mechanisms to complete the viral life cycle. Identifying the host molecules that participate in each step of virus replication could provide valuable new targets for antiviral therapy, but this goal may take several decades to achieve with conventional forward genetic screening methods and mammalian cell cultures. Here we describe a novel genome-wide RNA interference (RNAi) screen in Drosophila that can be used to identify host genes important for influenza virus replication. After modifying influenza virus to allow infection of Drosophila cells and detection of influenza virus gene expression, we tested an RNAi library against 13,071 genes (90% of the Drosophila genome), identifying over 100 for which suppression in Drosophila cells significantly inhibited or stimulated reporter gene (Renilla luciferase) expression from an influenza-virus-derived vector. The relevance of these findings to influenza virus infection of mammalian cells is illustrated for a subset of the Drosophila genes identified; that is, for three implicated Drosophila genes, the corresponding human homologues ATP6V0D1, COX6A1 and NXF1 are shown to have key functions in the replication of H5N1 and H1N1 influenza A viruses, but not vesicular stomatitis virus or vaccinia virus, in human HEK 293 cells. Thus, we have demonstrated the feasibility of using genome-wide RNAi screens in Drosophila to identify previously unrecognized host proteins that are required for influenza virus replication. This could accelerate the development of new classes of antiviral drugs for chemoprophylaxis and treatment, which are urgently needed given the obstacles to rapid development of an effective vaccine against pandemic influenza and the probable emergence of strains resistant to available drugs.  相似文献   

7.
Elbashir SM  Harborth J  Lendeckel W  Yalcin A  Weber K  Tuschl T 《Nature》2001,411(6836):494-498
  相似文献   

8.
Epigenetic information is frequently erased near the start of each new generation. In some cases, however, epigenetic information can be transmitted from parent to progeny (multigenerational epigenetic inheritance). A particularly notable example of this type of epigenetic inheritance is double-stranded RNA-mediated gene silencing in Caenorhabditis elegans. This RNA-mediated interference (RNAi) can be inherited for more than five generations. To understand this process, here we conduct a genetic screen for nematodes defective in transmitting RNAi silencing signals to future generations. This screen identified the heritable RNAi defective 1 (hrde-1) gene. hrde-1 encodes an Argonaute protein that associates with small interfering RNAs in the germ cells of progeny of animals exposed to double-stranded RNA. In the nuclei of these germ cells, HRDE-1 engages the nuclear RNAi defective pathway to direct the trimethylation of histone H3 at Lys?9 (H3K9me3) at RNAi-targeted genomic loci and promote RNAi inheritance. Under normal growth conditions, HRDE-1 associates with endogenously expressed short interfering RNAs, which direct nuclear gene silencing in germ cells. In hrde-1- or nuclear RNAi-deficient animals, germline silencing is lost over generational time. Concurrently, these animals exhibit steadily worsening defects in gamete formation and function that ultimately lead to sterility. These results establish that the Argonaute protein HRDE-1 directs gene-silencing events in germ-cell nuclei that drive multigenerational RNAi inheritance and promote immortality of the germ-cell lineage. We propose that C. elegans use the RNAi inheritance machinery to transmit epigenetic information, accrued by past generations, into future generations to regulate important biological processes.  相似文献   

9.
RNA interference-mediated inhibition of Hepatitis B Virus replication   总被引:1,自引:0,他引:1  
Persistent and recurrent infection of hepatitis B virus (HBV) represents one of the most common and severe viral infections of humans, and has caused a formidable health problem in the affected countries. Currently used antiviral drugs have a very limited success on controlling HBV replication and infection. RNA interference (RNAi), a process by which double-stranded RNA (dsRNA) directs sequence-specific degradation of target mRNA in mammalian and plant cells, has recently been used to knockdown gene expression in various species. In this study, we sought to determine whether RNAi-mediated silencing of HBV viral gene expression could lead to the effective inhibition of HBV replication. We first developed RNAi vectors that expressed small interfering RNA (siRNA) and targeted the HBV core or surface gene sequence. Our results demonstrated that these specific siRNAs efficiently reduced the levels of corresponding viral RNAs and proteins, and thus suppressed viral replication. Treatment with siRNA gave the greatest reduction in the levels of HBsAg (92%) and in HBeAg (85%) respectively in the cultured cell medium. Our findings further demonstrated that the RNAi-mediated antiviral effect was sequence-specific and dose-dependent. Therefore, our findings strongly suggest that RNAi-mediated silencing of HBV viral genes could effectively inhibit the replication of HBV, hence RNAi-based strategy should be further explored as a more efficacious antiviral therapy of HBV infection.  相似文献   

10.
利用免疫细胞荧光、RNA干涉(RNA interfere,RNAi)、qRT-PCR、Western blot及细胞计数等方法,设计合成三对小分子干扰RNA(small interfering RNA,siRNA)(siRNA-hnRNP K-1,2,3),对小鼠精原细胞中内源性的不均一性核糖核蛋白K(Heterogeneous ribonucleoproteins K,hnRNP K)进行敲低并对其沉默效率进行筛选,研究其对小鼠精原细胞存活的影响.结果表明,siRNA-hnRNP K-3对小鼠精原细胞具有80%以上的沉默效率,转染后发现细胞数目明显减少,说明沉默hnRNP K基因的表达对小鼠精原细胞的存活有显著影响.  相似文献   

11.
Forward genetic screens in model organisms have provided important insights into numerous aspects of development, physiology and pathology. With the availability of complete genome sequences and the introduction of RNA-mediated gene interference (RNAi), systematic reverse genetic screens are now also possible. Until now, such genome-wide RNAi screens have mostly been restricted to cultured cells and ubiquitous gene inactivation in Caenorhabditis elegans. This powerful approach has not yet been applied in a tissue-specific manner. Here we report the generation and validation of a genome-wide library of Drosophila melanogaster RNAi transgenes, enabling the conditional inactivation of gene function in specific tissues of the intact organism. Our RNAi transgenes consist of short gene fragments cloned as inverted repeats and expressed using the binary GAL4/UAS system. We generated 22,270 transgenic lines, covering 88% of the predicted protein-coding genes in the Drosophila genome. Molecular and phenotypic assays indicate that the majority of these transgenes are functional. Our transgenic RNAi library thus opens up the prospect of systematically analysing gene functions in any tissue and at any stage of the Drosophila lifespan.  相似文献   

12.
Guo G  Wang W  Bradley A 《Nature》2004,429(6994):891-895
Phenotype-driven recessive genetic screens in diploid organisms require a strategy to render the mutation homozygous. Although homozygous mutant mice can be generated by breeding, a reliable method to make homozygous mutations in cultured cells has not been available, limiting recessive screens in culture. Cultured embryonic stem (ES) cells provide access to all of the genes required to elaborate the fundamental components and physiological systems of a mammalian cell. Here we have exploited the high rate of mitotic recombination in Bloom's syndrome protein (Blm)-deficient ES cells to generate a genome-wide library of homozygous mutant cells from heterozygous mutations induced with a revertible gene trap retrovirus. We have screened this library for cells with defects in DNA mismatch repair (MMR), a system that detects and repairs base-base mismatches. We demonstrate the recovery of cells with homozygous mutations in known and novel MMR genes. We identified Dnmt1(ref. 5) as a novel MMR gene and confirmed that Dnmt1-deficient ES cells exhibit micro-satellite instability, providing a mechanistic explanation for the role of Dnmt1 in cancer. The combination of insertional mutagenesis in Blm-deficient ES cells establishes a new approach for phenotype-based recessive genetic screens in ES cells.  相似文献   

13.
14.
Complete genomic sequence is known for two multicellular eukaryotes, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, and it will soon be known for humans. However, biological function has been assigned to only a small proportion of the predicted genes in any animal. Here we have used RNA-mediated interference (RNAi) to target nearly 90% of predicted genes on C. elegans chromosome I by feeding worms with bacteria that express double-stranded RNA. We have assigned function to 13.9% of the genes analysed, increasing the number of sequenced genes with known phenotypes on chromosome I from 70 to 378. Although most genes with sterile or embryonic lethal RNAi phenotypes are involved in basal cell metabolism, many genes giving post-embryonic phenotypes have conserved sequences but unknown function. In addition, conserved genes are significantly more likely to have an RNAi phenotype than are genes with no conservation. We have constructed a reusable library of bacterial clones that will permit unlimited RNAi screens in the future; this should help develop a more complete view of the relationships between the genome, gene function and the environment.  相似文献   

15.
RNA interference (RNAi) holds considerable promise as a therapeutic approach to silence disease-causing genes, particularly those that encode so-called 'non-druggable' targets that are not amenable to conventional therapeutics such as small molecules, proteins, or monoclonal antibodies. The main obstacle to achieving in vivo gene silencing by RNAi technologies is delivery. Here we show that chemically modified short interfering RNAs (siRNAs) can silence an endogenous gene encoding apolipoprotein B (apoB) after intravenous injection in mice. Administration of chemically modified siRNAs resulted in silencing of the apoB messenger RNA in liver and jejunum, decreased plasma levels of apoB protein, and reduced total cholesterol. We also show that these siRNAs can silence human apoB in a transgenic mouse model. In our in vivo study, the mechanism of action for the siRNAs was proven to occur through RNAi-mediated mRNA degradation, and we determined that cleavage of the apoB mRNA occurred specifically at the predicted site. These findings demonstrate the therapeutic potential of siRNAs for the treatment of disease.  相似文献   

16.
17.
Gazin C  Wajapeyee N  Gobeil S  Virbasius CM  Green MR 《Nature》2007,449(7165):1073-1077
The conversion of a normal cell to a cancer cell occurs in several steps and typically involves the activation of oncogenes and the inactivation of tumour suppressor and pro-apoptotic genes. In many instances, inactivation of genes critical for cancer development occurs by epigenetic silencing, often involving hypermethylation of CpG-rich promoter regions. It remains to be determined whether silencing occurs by random acquisition of epigenetic marks that confer a selective growth advantage or through a specific pathway initiated by an oncogene. Here we perform a genome-wide RNA interference (RNAi) screen in K-ras-transformed NIH 3T3 cells and identify 28 genes required for Ras-mediated epigenetic silencing of the pro-apoptotic Fas gene. At least nine of these RESEs (Ras epigenetic silencing effectors), including the DNA methyltransferase DNMT1, are directly associated with specific regions of the Fas promoter in K-ras-transformed NIH 3T3 cells but not in untransformed NIH 3T3 cells. RNAi-mediated knockdown of any of the 28 RESEs results in failure to recruit DNMT1 to the Fas promoter, loss of Fas promoter hypermethylation, and derepression of Fas expression. Analysis of five other epigenetically repressed genes indicates that Ras directs the silencing of multiple unrelated genes through a largely common pathway. Last, we show that nine RESEs are required for anchorage-independent growth and tumorigenicity of K-ras-transformed NIH 3T3 cells; these nine genes have not previously been implicated in transformation by Ras. Our results show that Ras-mediated epigenetic silencing occurs through a specific, complex, pathway involving components that are required for maintenance of a fully transformed phenotype.  相似文献   

18.
Selective autophagy involves the recognition and targeting of specific cargo, such as damaged organelles, misfolded proteins, or invading pathogens for lysosomal destruction. Yeast genetic screens have identified proteins required for different forms of selective autophagy, including cytoplasm-to-vacuole targeting, pexophagy and mitophagy, and mammalian genetic screens have identified proteins required for autophagy regulation. However, there have been no systematic approaches to identify molecular determinants of selective autophagy in mammalian cells. Here, to identify mammalian genes required for selective autophagy, we performed a high-content, image-based, genome-wide small interfering RNA screen to detect genes required for the colocalization of Sindbis virus capsid protein with autophagolysosomes. We identified 141 candidate genes required for viral autophagy, which were enriched for cellular pathways related to messenger RNA processing, interferon signalling, vesicle trafficking, cytoskeletal motor function and metabolism. Ninety-six of these genes were also required for Parkin-mediated mitophagy, indicating that common molecular determinants may be involved in autophagic targeting of viral nucleocapsids and autophagic targeting of damaged mitochondria. Murine embryonic fibroblasts lacking one of these gene products, the C2-domain containing protein, SMURF1, are deficient in the autophagosomal targeting of Sindbis and herpes simplex viruses and in the clearance of damaged mitochondria. Moreover, SMURF1-deficient mice accumulate damaged mitochondria in the heart, brain and liver. Thus, our study identifies candidate determinants of selective autophagy, and defines SMURF1 as a newly recognized mediator of both viral autophagy and mitophagy.  相似文献   

19.
Genome sequencing projects generate a wealth of information; however, the ultimate goal of such projects is to accelerate the identification of the biological function of genes. This creates a need for comprehensive studies to fill the gap between sequence and function. Here we report the results of a functional genomic screen to identify genes required for cell division in Caenorhabditis elegans. We inhibited the expression of approximately 96% of the approximately 2,300 predicted open reading frames on chromosome III using RNA-mediated interference (RNAi). By using an in vivo time-lapse differential interference contrast microscopy assay, we identified 133 genes (approximately 6%) necessary for distinct cellular processes in early embryos. Our results indicate that these genes represent most of the genes on chromosome III that are required for proper cell division in C. elegans embryos. The complete data set, including sample time-lapse recordings, has been deposited in an open access database. We found that approximately 47% of the genes associated with a differential interference contrast phenotype have clear orthologues in other eukaryotes, indicating that this screen provides putative gene functions for other species as well.  相似文献   

20.
A loss-of-function RNA interference screen for molecular targets in cancer   总被引:2,自引:0,他引:2  
Ngo VN  Davis RE  Lamy L  Yu X  Zhao H  Lenz G  Lam LT  Dave S  Yang L  Powell J  Staudt LM 《Nature》2006,441(7089):106-110
The pursuit of novel therapeutic agents in cancer relies on the identification and validation of molecular targets. Hallmarks of cancer include self-sufficiency in growth signals and evasion from apoptosis; genes that regulate these processes may be optimal for therapeutic attack. Here we describe a loss-of-function screen for genes required for the proliferation and survival of cancer cells using an RNA interference library. We used a doxycycline-inducible retroviral vector for the expression of small hairpin RNAs (shRNAs) to construct a library targeting 2,500 human genes. We used retroviral pools from this library to infect cell lines representing two distinct molecular subgroups of diffuse large B-cell lymphoma (DLBCL), termed activated B-cell-like DLBCL and germinal centre B-cell-like DLBCL. Each vector was engineered to contain a unique 60-base-pair 'bar code', allowing the abundance of an individual shRNA vector within a population of transduced cells to be measured using microarrays of the bar-code sequences. We observed that a subset of shRNA vectors was depleted from the transduced cells after three weeks in culture only if shRNA expression was induced. In activated B-cell-like DLBCL cells, but not germinal centre B-cell-like DLBCL cells, shRNAs targeting the NF-kappaB pathway were depleted, in keeping with the essential role of this pathway in the survival of activated B-cell-like DLBCL. This screen uncovered CARD11 as a key upstream signalling component responsible for the constitutive IkappaB kinase activity in activated B-cell-like DLBCL. The methodology that we describe can be used to establish a functional taxonomy of cancer and help reveal new classes of therapeutic targets distinct from known oncogenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号