首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
研究方法   8篇
综合类   21篇
  2011年   2篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Tissue-specific and reversible RNA interference in transgenic mice   总被引:11,自引:0,他引:11  
Genetically engineered mice provide powerful tools for understanding mammalian gene function. These models traditionally rely on gene overexpression from transgenes or targeted, irreversible gene mutation. By adapting the tetracycline (tet)-responsive system previously used for gene overexpression, we have developed a simple transgenic system to reversibly control endogenous gene expression using RNA interference (RNAi) in mice. Transgenic mice harboring a tet-responsive RNA polymerase II promoter driving a microRNA-based short hairpin RNA targeting the tumor suppressor Trp53 reversibly express short hairpin RNA when crossed with existing mouse strains expressing general or tissue-specific 'tet-on' or 'tet-off' transactivators. Reversible Trp53 knockdown can be achieved in several tissues, and restoring Trp53 expression in lymphomas whose development is promoted by Trp53 knockdown leads to tumor regression. By leaving the target gene unaltered, this approach permits tissue-specific, reversible regulation of endogenous gene expression in vivo, with potential broad application in basic biology and drug target validation.  相似文献   
2.
A microRNA component of the p53 tumour suppressor network   总被引:5,自引:0,他引:5  
  相似文献   
3.
Human lung adenocarcinomas with activating mutations in EGFR (epidermal growth factor receptor) often respond to treatment with EGFR tyrosine kinase inhibitors (TKIs), but the magnitude of tumour regression is variable and transient. This heterogeneity in treatment response could result from genetic modifiers that regulate the degree to which tumour cells are dependent on mutant EGFR. Through a pooled RNA interference screen, we show that knockdown of FAS and several components of the NF-κB pathway specifically enhanced cell death induced by the EGFR TKI erlotinib in EGFR-mutant lung cancer cells. Activation of NF-κB through overexpression of c-FLIP or IKK (also known as CFLAR and IKBKB, respectively), or silencing of IκB (also known as NFKBIA), rescued EGFR-mutant lung cancer cells from EGFR TKI treatment. Genetic or pharmacologic inhibition of NF-κB enhanced erlotinib-induced apoptosis in erlotinib-sensitive and erlotinib-resistant EGFR-mutant lung cancer models. Increased expression of the NF-κB inhibitor IκB predicted for improved response and survival in EGFR-mutant lung cancer patients treated with EGFR TKI. These data identify NF-κB as a potential companion drug target, together with EGFR, in EGFR-mutant lung cancers and provide insight into the mechanisms by which tumour cells escape from oncogene dependence.  相似文献   
4.
RNA interference   总被引:545,自引:0,他引:545  
Hannon GJ 《Nature》2002,418(6894):244-251
  相似文献   
5.
A microRNA polycistron as a potential human oncogene   总被引:5,自引:0,他引:5  
To date, more than 200 microRNAs have been described in humans; however, the precise functions of these regulatory, non-coding RNAs remains largely obscure. One cluster of microRNAs, the mir-17-92 polycistron, is located in a region of DNA that is amplified in human B-cell lymphomas. Here we compared B-cell lymphoma samples and cell lines to normal tissues, and found that the levels of the primary or mature microRNAs derived from the mir-17-92 locus are often substantially increased in these cancers. Enforced expression of the mir-17-92 cluster acted with c-myc expression to accelerate tumour development in a mouse B-cell lymphoma model. Tumours derived from haematopoietic stem cells expressing a subset of the mir-17-92 cluster and c-myc could be distinguished by an absence of apoptosis that was otherwise prevalent in c-myc-induced lymphomas. Together, these studies indicate that non-coding RNAs, specifically microRNAs, can modulate tumour formation, and implicate the mir-17-92 cluster as a potential human oncogene.  相似文献   
6.
The application of RNA interference (RNAi) to mammalian systems has the potential to revolutionize genetics and produce novel therapies. Here we investigate whether RNAi applied to a well-characterized gene can stably suppress gene expression in hematopoietic stem cells and produce detectable phenotypes in mice. Deletion of the Trp53 tumor suppressor gene greatly accelerates Myc-induced lymphomagenesis, resulting in highly disseminated disease. To determine whether RNAi suppression of Trp53 could produce a similar phenotype, we introduced several Trp53 short hairpin RNAs (shRNAs) into hematopoietic stem cells derived from E(mu)-Myc transgenic mice, and monitored tumor onset and overall pathology in lethally irradiated recipients. Different Trp53 shRNAs produced distinct phenotypes in vivo, ranging from benign lymphoid hyperplasias to highly disseminated lymphomas that paralleled Trp53-/- lymphomagenesis in the E(mu)-Myc mouse. In all cases, the severity and type of disease correlated with the extent to which specific shRNAs inhibited p53 activity. Therefore, RNAi can stably suppress gene expression in stem cells and reconstituted organs derived from those cells. In addition, intrinsic differences between individual shRNA expression vectors targeting the same gene can be used to create an 'epi-allelic series' for dissecting gene function in vivo.  相似文献   
7.
Hammond SM  Bernstein E  Beach D  Hannon GJ 《Nature》2000,404(6775):293-296
  相似文献   
8.
Role for a bidentate ribonuclease in the initiation step of RNA interference   总被引:344,自引:0,他引:344  
Bernstein E  Caudy AA  Hammond SM  Hannon GJ 《Nature》2001,409(6818):363-366
  相似文献   
9.
Qi Y  He X  Wang XJ  Kohany O  Jurka J  Hannon GJ 《Nature》2006,443(7114):1008-1012
  相似文献   
10.
The manner in which phase transformations occur in solids determines important structural and physical properties of many materials. The main problem in characterizing the kinetic processes that occur during phase transformations is the difficulty of observing directly, in real time, the growth of one phase at the expense of another. Here we use low-energy electron microscopy to study the real-time kinetics of a phase transformation confined to the silicon (111) surface. We show that the transformation is governed by the rate at which material is exchanged between the first layer of the crystal and the surface. In bulk phase transformations, the dynamics are usually governed either by the rate of diffusion of material to the phase boundaries or by the structural rearrangement of atoms at the phase boundary. The kinetic process that we have identified here has no bulk analogue and leads to domain dynamics that are qualitatively different from those expected for bulk systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号