首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
针对双轴驱动纯电动汽车的前后电机驱动转矩分配,基于电机的map特性,建立以双电机利用效率最大化为目标的优化模型,获得双驱动电动汽车不同转速与转矩需求下的双电机最优转矩分配模型.针对双轴驱动电动汽车,设计了普通、动力与经济3种驾驶驱动模式,并基于优化模型制定了3种驱动模式的转矩分配优化策略.最后以轻量化纯电动中巴为对象,建立了Carsim/Simulink联合仿真模型,分别以0~60 km/h加速实验验证动力性能,以NEDC工况的经济性验证效率.仿真结果表明,在3种驱动模式下,文中所提出的策略能小幅度缩短电动中巴的加速时间,将NEDC工况的续航里程分别提升2.20%、4.56%与6.60%,从而为双轴驱动电动汽车提供了一种双电机转矩优化分配的新方法.  相似文献   

2.
针对电动拖拉机实际作业特点,分析其动力传动系统参数匹配计算方法,提出20 kW电动拖拉机两挡动力传递方案.以同步提升电动拖拉机动力性和经济性为目标,定义了电动拖拉机旋耕最大速度、连续犁耕作业时间、连续旋耕作业时间3个性能指标,建立基于权重系数的多指标同步优化目标函数.以20 k W电动拖拉机为研究对象,对其传动系统参数进行多指标同步优化,并对优化方案下的电动拖拉机动力电池及电机动态性能进行仿真分析.结果说明了本文提出的20 kW电动拖拉机两挡动力传递方案的可行性,同时表明本文提出的基于电动拖拉机实际作业工况的传动系统参数多指标同步优化策略的有效性.  相似文献   

3.
基于中国典型城市循环工况下对纯电动客车驱动电机进行选型优化,利用CRUISE仿真软件搭建整车模块,对驱动电机选型优化前后分别进行整车性能仿真.结果表明:对纯电动客车驱动电机选型优化较合理,优化后整车在中国典型城市循环工况下百公里耗电量下降4.1%,续驶里程增加4.6%,匀速40 km·h~(-1)工况下百公里耗电量下降4.2%,续驶里程增加8.5%.  相似文献   

4.
针对纯电动轻型车辆用电机驱动系统,提出了驱动电机与整车联合仿真的分析方法.基于车辆的动力需求,采用有限元法对驱动电机进行设计和分析.以车辆动力性能指标作为设计输入,建立车辆的数学模型.结合电机性能指标与整车数学模型,采用AVL Cruise软件对整车性能进行联合仿真.以一款电动摩托车用轮毂电机驱动系统为例,建立了电机及整车系统的联合仿真分析模型并进行了试验验证.试验结果表明,结合驱动电机与整车数学模型的联合仿真方法,适用于纯电动轻型车辆电机驱动系统的设计和整车性能匹配.  相似文献   

5.
动力系统决定着电动汽车的加速性能,爬坡性能和续航里程.结合电动汽车的工作原理介绍了电动汽车动力系统参数设计方法,具体包括电机设计、传动系统设计和电池组设计.以某电动汽车为例开展了动力系统参数设计.建立了基于ADVISOR的电动汽车性能仿真模型.对电动汽车的加速性能、爬坡性能和续航里程进行了仿真.仿真结果表明:该电动汽车0~96.6km/h的加速时间为7.1s,最大爬坡度为28.4%,续航里程为142km,动力性能指标满足设计要求.  相似文献   

6.
针对传统增程电动车动力系统布置困难、轴荷分配不合理等问题,构建增程器前置轮毂电机后驱的动力系统构型,根据设计指标与整车参数完成动力系统参数匹配,利用MATLAB\\Simulink\\Stateflow搭建整车控制策略,利用AVL Cruise仿真软件在新欧洲驾驶循环(NEDC工况)下对整车的动力性、经济性与控制策略进行分析。仿真结果显示:整车百公里加速时间为10.35 s,最高车速为158.48 km/h,车速20 km/h时最大爬坡度为34%;NEDC工况下总续驶里程为311.53 km,纯电动模式下百公里电耗为16.67 kWh,增程模式下百公里油耗为6.18 L;各工作模式均可在特定工况下开启或关闭。提出的动力系统方案满足整车对动力性、经济性的要求,搭建的控制策略与增程式电动车的工作模式相符,相关研究为提高增程式电动的性能提供了解决思路。  相似文献   

7.
针对纯电动拖拉机续驶里程不足等问题,分析了燃料电池和蓄电池的输出特性,设计了燃料电池/蓄电池混合动力电动拖拉机动力系统的结构和功率流。考虑到保持燃料电池系统的最优性能和保证蓄电池组的合理充放电等原则,制定了一种基于模糊控制的能量管理策略。仿真结果表明:在田间作业工况下,与开关控制策略相比,本文设计的能量管理策略的等效氢气消耗量降低12. 84%,等效氢气消耗量方差降低20. 24%。在运输作业工况下,与开关控制策略相比,本文设计的能量管理策略的等效氢气消耗量降低11. 11%。  相似文献   

8.
我省目前各类拖拉机保有量约40余万台,其中大部分都上路时行运输作业,因此性能的好坏直接影响到交通运行安全与人民生命财产的安危,为此浙江大学内烯机研究所专门研制了TC—A型平台式拖拉机安全性能测试线,成功地实现了拖拉机的定量安全技术检验,有利于拖拉机的技术工作状态安全可靠,减少事故率.本测试线根据浙江省农机管理所规定的项目,按CB7258—1997《机动车安全技术条件》的规定要求进行测试,主要技术指标为:速度测量范围:0km/h~60km/h;速度测量分辨率:0.1km/h;速度测试精度:≤±1%;最  相似文献   

9.
通过分析纯电动车整车动力系统的结构特点及纯电动汽车对驱动电机的要求,从汽车行驶动力学出发建立了纯电动汽车电动机性能参数的数学模型, 探讨总结了电机基本特性参数的设计方法. 整车动力系统仿真实验结果表明,最高车速为48.6 km/h,常规车速为35.2 km/h,0~40 km/h加速时间为15.2 s,最大爬坡度为19.7%,满足设计目标,从而验证了该方法的正确性和可行性.  相似文献   

10.
针对传统比例积分(PI)控制在电机控制中控制效果不良的问题,设计了一种基于向后传播算法(BP)模糊神经网络的PI控制器。基于MATLAB/Simulink建立了纯电动汽车驱动系统的仿真模型,将驾驶员操作与电机驱动联系起来,在自主研发的整车惯性模拟台架上进行试验。仿真和试验结果均表明:在ECE城市工况下,采用BP模糊神经网络控制的纯电动汽车实际车速能较好地跟随工况需求车速,速度偏差在±2 km/h以内。  相似文献   

11.
为提高两档AMT纯电动汽车的换挡平顺性及减少换挡时间,建立了详细的纯电动汽车动力传动系统的数学模型,制定驱动电机参与换挡过程的综合协调控制方法,从允许的最大换挡冲击度出发得出转矩相阶段电机扭矩控制律,惯性相阶段采用PID和有限状态切换的控制策略进行电机调速.最后搭建纯电动汽车传动系统试验台架,对升挡和降挡过程中换挡协调控制策略进行仿真分析与试验验证.仿真结果显示:0~100 km/h全加速的升挡时间为0.5 s,纵向冲击度在8.0 m/s~3以内,NEDC市区工况升降挡时间均在0.6 s以内,最大冲击度未超过7.8 m/s~3;试验结果显示:驱动电机在固定转速下的升降挡时间分别为0.6 s和0.8 s,输出轴转速变化平滑.传统AMT车辆的换挡时间为0.8~1.0 s,上述结果表明该换挡综合协调控制策略能够实现快速、平稳换挡.  相似文献   

12.
分析了纯电动旅游客车永磁加增磁直流电机驱动系统结构与工作原理.针对加速工况,分别对IGBT1导通和截止状态建立了电机驱动系统瞬态数学模型.基于控制逻辑利用Matlab/Stateflow建立了控制器模型.结合以上两者得到以加速踏板信号为输入的整车瞬态数学模型.基于该模型进行了加速工况动态仿真并获得加速工况下电机驱动系统的控制特性.该分析有助于进一步改进电机驱动系统控制.  相似文献   

13.
增程式四轮驱动电动拖拉机转矩分配策略   总被引:1,自引:0,他引:1  
针对增程式四轮驱动电动拖拉机前后轮驱动转矩分配问题,提出了一种基于模糊逻辑的转矩分配策略。通过对拖拉机犁耕机组进行受力分析,将拖拉机坡度和犁耕阻力作为模糊输入变量,拖拉机电机转矩分配因数作为模糊输出变量,设计模糊控制器。为了验证所提策略的优越性,设置了定比分配策略作为对比策略。仿真结果表明:与定比分配策略相比,本文策略将拖拉机前轮最大滑转率降低了16.5%,后轮最大滑转率仅上升了2.2%,有效地将拖拉机滑转率控制在合理范围内。  相似文献   

14.
针对机电飞轮电动汽车工作模式复杂、能量管理困难等问题,提出了一种基于确定性规则的控制策略.该控制策略以车速、加速度、车辆需求转矩、电池荷电状态、飞轮能量状态为输入量,在满足车辆实际需求的前提下对电机、飞轮进行转矩分配.利用MATLAB/Simulink搭建整车模型,在NEDC工况下对机电飞轮电动汽车进行动力性和经济性仿真分析.仿真结果表明,整车百公里加速时间为11.8 s,最高车速为156.68 km/h,车速20 km/h时最大爬坡度为26%;在NEDC循环工况下其耗电量下降了0.89%,平均驱动效率提高了8.2%.该控制策略可以实现合理的转矩分配,能够保证机电飞轮电动汽车在动力性的基础上提高经济性.  相似文献   

15.
对某具有双行星排的功率分流式混合动力系统进行了结构优化,并对优化后的系统进行运动学、动力学和效率分析,随后介绍了系统的工作模式及特点.基于Matlab/Simulink与LMS AMESim软件建立联合仿真平台,进行整车性能仿真.结果表明,整车能量消耗和动力性能均得到改善.纯电动模式下,城市工况(UDC)整车电能消耗降低8%;混动模式下,新欧洲行驶工况(NEDC)整车油耗降低6%.纯电动模式最高车速从110 km·h~(-1)增加到160 km·h~(-1).混动模式0~100 km·h~(-1)加速时间从14.5 s减少到10.0 s.  相似文献   

16.
针对轮边驱动式电动拖拉机差速转向问题,建立了三自由度动力学模型,导出了滑转率-车速求解模型和转向轨迹模型。通过构建驾驶员输入模型,建立了系统仿真模型,分析差速率对横摆角速度、侧倾角、滑转率和转向半径的影响。研究结果表明:重载低速工况差速率的推荐范围为21%~23%,其转向半径为4.57~5.01 m;轻载高速工况差速率的推荐范围为6%~8%,其转向半径为13.13~17.50 m。  相似文献   

17.
为了寻找农用机械整车动力学特征分析的高效、可靠手段,消除整机性能试验研究的诸多弊端,本文采用了当前在道路车辆动力学分析中常用的仿真技术手段,即通过使用AVL公司旗下的一款整车性能分析软件Cruise搭建阿波斯拖拉机的整车模型,对拖拉机的动力性能和经济性能进行了仿真计算,并进行了试验验证。 在道路行驶条件下,对拖拉机的动力性能(最高车速、最大加速度、滑行距离)进行了计算分析;在农田工作条件下,对拖拉机特定工况下的燃油经济性进行了仿真计算。将各种条件下的仿真计算结果与实车试验进行了对比验证。得出以下结论:道路行驶条件下,采用H5档,试验测试得到的最高车速为40km/h,对应的仿真计算结果为40.54km/h,相对误差为1.35%;采用H5档位,0-40km/h加速时间的仿真结果为5.7s,对应的实测时间为5.5s,相对误差为3.6%;H5档的最大加速度的计算值为2.26m/s2 ,道路试验所测得的H5档最大加速度为2.22 m/s2;道路滑行以20km/h的初速度滑行距离,仿真计算的结果为54m,对应的实测距离为53m;农田工作条件下,耕地深度22.5cm时,0-6km/h加速试验的实际测量距离和时间为8.2m和6.7s,对应的仿真计算结果为8m和6.5s;以L2档位,8km/h工作时测得的实际油耗为17.2L/h,对应的仿真计算油耗为17L/h。通过试验的验证,搭建的阿波斯拖拉机的仿真计算模型是合理的,计算精度符合要求,能够作为拖拉机整机开发的重要辅助手段。  相似文献   

18.
探究拖拉机在农田作业工况下的动力性及经济性对有效提高农用拖拉机动力传动系统匹配的合理性具有重要意义。首先,定义了拖拉机农田作业工况下的性能评价指标。然后,应用Cruise软件搭建了农田作业工况下拖拉机整车仿真模型,根据实际性能仿真需求,在软件中设置相应的计算任务,完成了农用拖拉机的动力性和经济性的仿真分析。仿真结果表明,拖拉机的动力输出能够较好的适应农机具的加载特性及土壤的特殊性,并具有一定的动力潜力,体现了较好的动力性,在低档位及高档位高转速工况下,体现了良好的燃油经济性。最后,进行相应的实车试验,完成了仿真模型的校验,验证了搭建的拖拉机仿真模型的准确性,此模型可以为后续的拖拉机动力传动系统优化匹配提供模型参考。  相似文献   

19.
为了寻找农用机械整车动力学特征分析的高效、可靠手段,消除整机性能试验研究的诸多弊端,采用了当前在道路车辆动力学分析中常用的仿真技术手段,即通过使用AVL公司旗下的一款整车性能分析软件Cruise搭建阿波斯拖拉机的整车模型,对拖拉机的动力性能和经济性能进行了仿真计算;并进行了试验验证。在道路行驶条件下,对拖拉机的动力性能(最高车速、最大加速度、滑行距离)进行了计算分析;在农田工作条件下,对拖拉机特定工况下的燃油经济性进行了仿真计算。将各种条件下的仿真计算结果与实车试验进行了对比验证。得出以下结论:道路行驶条件下,采用H5档,试验测试得到的最高车速为40 km/h,对应的仿真计算结果为40.54 km/h,相对误差为1.35%。采用H5档位,0~40 km/h加速时间的仿真结果为5.7 s,对应的实测时间为5.5 s,相对误差为3.6%;H5档的最大加速度的计算值为2.26 m/s~2,道路试验所测得的H5档最大加速度为2.22 m/s~2。道路滑行以20 km/h的初速度滑行距离,仿真计算的结果为54 m,对应的实测距离为53 m。农田工作条件下,耕地深度22.5 cm时,0~6 km/h加速试验的实际测量距离和时间为8.2 m和6.7 s,对应的仿真计算结果为8 m和6.5 s。以L2档位,8 km/h工作时测得的实际油耗为17.2 L/h,对应的仿真计算油耗为17 L/h。通过试验的验证,搭建的阿波斯拖拉机的仿真计算模型是合理的,计算精度符合要求,能够作为拖拉机整机开发的重要辅助手段。  相似文献   

20.
混合动力电动汽车的建模与仿真研究   总被引:1,自引:0,他引:1  
为预测和分析混合动力电动汽车的性能,在系统仿真软件Matlab环境中建立了某混合动力电动汽车的仿真模型以及相应的控制器模型,并对模型进行了纯电动和混合动力行驶工况下仿真分析.结果表明,实际的仿真车速、扭矩与驱动循环规定车速、扭矩相一致,因此所开发的仿真模型能够跟踪循环工况,从而验证了仿真模型的正确性,也为混合动力电动汽车的开发奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号