首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
三平移弱耦合并联机器人机构精度分析   总被引:2,自引:1,他引:1  
针对三平移非对称3-RRRP(4R)并联机器人机构的精度进行分析.该机型具有良好的解耦特性,属于弱耦合机型.该类机型由于实时性好,可以用控制软件实现误差补偿.从拓扑结构分析着手,分析了三平移弱耦合机型的位置正解、反解,用全微分的方法分析了该机型的精度误差值,研究了影响该机型机器人精度的因素,并探讨了提高精度的对策.由分析可知,动平台位置误差与所在位置成非线性关系,其中δθ′,误差对机构位置的非线性误差影响最大.此外,机构原始误差是产生误差的主要原因.因此提高零件加工和装配的精度是提高机器人精度的重要途径。  相似文献   

2.
针对机器人关节柔性误差提出利用误差分布空间描述操作精度的方法,耦合各关节的操作误差得到真实操作点在空间中可能存在的区域,进而得到机器人沿各个方向上的操作精度.给出了误差分布空间的计算方法,通过对低维误差空间的分段升维,解决了计算难度随维数指数倍增长的问题.研究了闭链协调操作过程中的误差分布特性,并基于误差分布空间分析了冗余度机器人关节自运动特性对闭链协调操作精度的影响.研究结果表明:同一操作精度对应的关节构型不唯一,且操作空间中误差最小值对应的关节角度并不连续.为此提出了一种基于最小二乘的误差极小化机器人轨迹规划方法,并通过仿真验证了该方法的有效性.  相似文献   

3.
通过对 6—SPS型并联机器人位置输入输出方程微分 ,分析并联机器人结构误差对机器人末端误差的影响 .当结构误差和末端误差都是微小量时 ,机器人误差模型为线性数学模型 ,仿真证实该算法可对 6—SPS并联机器人进行精度分析 .  相似文献   

4.
以四自由度码垛机器人为研究对象,基于单维拉线测量系统对该机器人的运动学标定方法进行了研究.采用环路增量法构造了码垛机器人平行四连杆的误差模型,并建立了带关节变量比例系数的运动学误差模型,从而对关节传动误差进行补偿.通过对影响机器人末端位置精度的几何误差参数进行敏感性分析,将几何误差源简化为11项,可有效提高辨识效率.结合单维拉线测量系统的特点,建立了末端运动误差与几何误差源的映射关系,进而提出了一种基于距离测量的参数辨识模型.通过计算机仿真和标定试验对该方法的有效性进行了验证.试验结果表明,标定后码垛机器人位置误差3?值由11.73,mm减小至1.79,mm,运动精度提升84.7%,.  相似文献   

5.
一种基于交叉耦合的速度控制器   总被引:3,自引:0,他引:3  
以足球机器人小车子系统为研究对象,通过对足球机器人小车轨迹跟踪误差的分析,建立了考虑轨迹跟踪精度的复合误差模型·提出一种基于模糊推理的交叉耦合误差补偿器的设计原理、算法及实现方法·该误差补偿器在不改变机器人小车内部速度环结构的条件下,通过向各轮提供附加补偿控制量,进而实现提高机器人小车轨迹跟踪的精度·针对足球机器人小车数学模型的仿真实验结果表明,该方法能够有效地提高机器人小车轨迹跟踪的精度·  相似文献   

6.
基于广义几何误差模型的微机器人精度分析   总被引:2,自引:1,他引:1  
为描述各种误差源对机器人本体产生的影响 ,提出了一个用于微机器人精度分析的通用方法。通过任意两坐标系间的向后微分关系 ,利用运动学方程以及并联机构的环路特性 ,建立了微机器人的广义几何误差模型。利用此模型 ,可以对微机器人进行精度评估和误差修正。该方法可推广应用到一般并联机器人的误差建模和精度分析  相似文献   

7.
基于单目视觉的Delta机器人零点标定方法   总被引:1,自引:0,他引:1  
针对实际工程应用中少自由度高速抓放并联机器人的精度问题,提出了一种基于视觉测量的快速标定方法.以Delta机器人为例,通过系统分析和机构合理简化,建立了零点误差模型.构造出基于单目视觉平面测量的零点误差辨识模型,借助单目视觉仅检测机器人动平台沿水平面运动时末端x、y向的位置误差,识别出零点误差,进而修改零点位置实现末端位置误差补偿.标定实验结果表明该方法简单、有效、实用性强.  相似文献   

8.
针对现有单一的线性伺服控制时机器人运动平台的跟踪轨迹精度较差的问题,基于前馈力矩补偿和滑模变结构控制相结合的控制策略,对具有线性位置解的3-CRU并联机器人的轨迹跟踪进行了相关研究.采用拉格朗日方程建立了该机器人的包含建模误差和外部干扰的动力学模型并辨识了机器人的动力学参数,设计了在线性伺服控制基础上前馈力矩补偿与滑模变结构控制相结合的控制策略.通过实验对比,证明采用上述控制策略不仅提高了机器人动平台的轨迹跟踪精度,而且增强了机器人系统的鲁棒性.同时,线性的位置正解方程这一特性使得机器人驱动滑块的位置误差传递到运动平台上不会呈指数型累积增长,从结构上保证了机器人运动平台的轨迹精度.  相似文献   

9.
颌骨重建手术机器人定位精度分析与误差补偿   总被引:1,自引:1,他引:0  
为提高颌骨重建机器人的精度,借助于—台可以实现绝对坐标测量的高精度光学定位跟踪仪,对机器人系统的定位精度进行了误差分析与补偿研究.针对结构参数和运动变量误差,采用修正的运动学模型,进一步真实地反映了机器人的实际结构参数;对齿轮传动误差和间隙引起的关节回转误差通过实验进行了修正,有效提高了关节传动精度;对零位定位误差,通过机器人逆运动学反解出关节转角,并进行误差补偿,提高了定位基准的精度.实验结果表明上述方法可有效提高颌骨重建机器人的定位精度.   相似文献   

10.
6-SPS并联机器人单支链精度综合算法   总被引:3,自引:0,他引:3  
通过对6—SPS型并联机器人位置输入输出方程微分,建立了原始误差存在在单支链上时机器人误差模型.在此基础上,运用误差独立作用原理和原始误差等效作用原则,在该情况下对并联机器人进行精度综合.该办法将并联机器人精度综合这一原本多目标多变量的非线性最优化组合问题转化为线性问题,因而简单可行,具有一定的实用价值.  相似文献   

11.
对于少自由度并联构型装备,必须通过误差建模将影响末端可控和不可控误差的几何误差源进行分离,从而指导机构的精度设计和运动学标定。以5自由度混联机械手模块Tficept和TriVariant为对象,研究了一种少自由度并联构型装备的误差建模方法。该方法可有效分离出影响末端不可控误差的几何误差源,从而得到仅需控制恰约束支链的制造和装配误差,有效抑制末端的不可控姿态误差。研究结果表明,对于等同的任务空间和相同的尺度参数,两机械手具有相近的精度性能。  相似文献   

12.
精密并联机器人系统误差的分析与补偿   总被引:4,自引:0,他引:4  
为减小机构末端定位误差,提高精密并联机器人运动精度,以6-HTRT并联机构为结构模型,分析了机构的各种制造误差。首先在机构上开发了一种新型虎克铰链,同时采用了预紧装置;然后在控制系统中引入DSP高性能数据处理器;最后,用矢量构造的方法计算机构速度Jacobian矩阵,用数值法计算位置正解,用构造法计算误差Jacobian矩阵,对机构末端误差进行补偿。通过以上措施,可以使系统的精度提高到机构重复运动精度的3倍左右,满足精密并联机器人工作的精度要求。其中,软件误差补偿算法不受并联机构类型的限制,有较大的适用范围。  相似文献   

13.
针对Delta并联机器人末端控制精度问题,提出一种基于RBF的提高Delta并联机构运动学控制精度的方法。首先对Delta并联机器人的运动学逆解进行分析,探讨了影响控制精度的因素和现有提高控制精度方法的局限性。其次,求解Delta并联机器人的工作空间,结合实际工作,通过试验采集训练样本。以末端实际位置为输入样本,末端的期望位置与实际位置之差为输出样本,进行RBF神经网络模型训练,得到末端实际位置与位置偏差之间的非线性映射关系,基于此设计位置补偿策略。最后,在Delta机器人平台上进行实验验证,使用训练好的RBF网络结合运动学逆解,对Delta机器人末端进行轨迹跟踪控制。实验结果表明,末端控制误差由±30mm减小到±5mm,有效的减少了末端位置误差,为Delta机器人精准控制提供了一种简单易行的方法。  相似文献   

14.
一种并联机构结构误差识别与修正的新算法   总被引:1,自引:0,他引:1  
为了提高并联机床的运动精度,针对简化误差源模型(含42个误差量),基于并联机构位置正解的快速算法提出了一种结构误差识别的新算法.首先按理论并联机构设计参数,将一球杆仪的两个球铰分别固定在保持平行的动、静平台上,令球杆仪在动平台上的球铰中心相对于静平台上的球铰中心做球面螺旋线运动.然后在此前提下根据球杆仪球杆理论计算长度与实际长度之差构造m维矢量空间,依次让每一个待识别的结构参数有一个单位增量,重点修正与实测误差相关程度最高的结构参数.并通过从测量误差向量中分离出主修正向量后的残余误差向量方法提高修正效率.经过若干轮修正,直到使修正后球杆理论计算长度与实际长度基本一致,即可认为各项误差已修正完毕.该算法只需测量球杆的长度值,大大减少了测量工作量及由此而引入的误差源.  相似文献   

15.
为了提高双轮移动机器人运动轨迹追踪精度,采用改进粒子群算法优化BP神经网络PID控制器,并对控制效果进行仿真验证。创建双轮移动机器人模型简图,给出运动轨迹误差方程式。在传统PID控制基础上增加BP神经网络结构,引用粒子群算法并对其进行改进,采用改进粒子群算法优化BP神经网络PID控制调整参数,给出双轮移动机器人PID控制参数优化流程。采用数学软件MATLAB对双轮移动机器人轨迹追踪误差进行仿真验证,并与传统PID控制追踪误差进行对比。仿真曲线显示:在理想环境中,双轮移动机器人采用两种控制方法都能较好地实现轨迹追踪,追踪误差较小;在干扰波形环境中,传统PID控制双轮移动机器人追踪误差较大,而改进PID控制双轮移动机器人追踪误差较小。采用改进粒子群算法优化BP神经网络PID控制器,可以提高移动机器人运动轨迹追踪精度。  相似文献   

16.
为实现移动机器人点到点的平滑运动,需要规划出一条平滑路径使移动机器人到达目标点的位置和目标方向。针对传统Turn-Run-Turn方法规划的路径不连续,效率低等问题,在双圆弧理论的基础上提出圆弧-直线-圆弧路径规划方法并进行了理论推导。在实验室环境下,采用履带式移动平台对本文提出方法进行了实验验证。实验结果表明,通过该方法可使移动平台到达目标点的位置和方向,其横向误差均值为10.5 cm,纵向误差均值为3.7 cm,方向误差值均值为1.5°。  相似文献   

17.
利用并联机器人的运动学反解模型,通过误差传递矩阵的求解来探讨机器人主要误差源与其位姿误差之间的关系,建立了并联机器人的位姿误差模型、并讨论了并联机器人主要误差源对位姿精度的影响,为实际误差的补偿与控制奠定了理论基础.  相似文献   

18.
 作为一种全新的室内定位技术,将无线路由器的无线信号强度(Receive Signal Strength Indicator,RSSI)值应用在室内移动机器人定位领域。为实现室内移动机器人的定位,提出利用无线信号强度值定位的概率法,根据无线信号强度值在室内环境中的分布特点,分析概率法定位原理,开发一种基于VC++6.0平台室内移动机器人定位系统,该定位系统包括硬件平台和软件平台,并进行移动机器人定位实验,得到较好的定位实验结果。同时,分析机器人定位精度,确定影响定位精度的因素主要包括障碍物、人体、温度和湿度等。定位实验结果表明,在结构化环境下机器人定位的最大偏差为1.2758m,最小定位偏差为0.3007m,可以较好地满足室内移动机器人的定位要求。  相似文献   

19.
针对未知室内环境下的自主移动机器人的同时定位和地图构建(SLAM)问题,通过激光测距仪来获取环境信息,采用室内环境直线特征的提取和匹配方法,使移动机器人能够自主定位,解决了里程计传感器在移动中所带来的不确定性误差,同时采用移动栅格法对全局地图更新,提高了系统运行速度.利用Pioneer-3移动机器人平台进行实验,得到了较完整的环境地图.实验结果表明了基于环境特征的移动机器人同时定位和地图构建方法的有效性和实用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号