首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
针对锂离子电池的荷电状态(state of charge,SOC)估算精度,设计了一种基于深度强化学习卡尔曼滤波锂离子电池SOC估计算法.首先以锂离子电池二阶RC等效电路为研究对象,应用卡尔曼滤波算法,构建了锂离子电池的离散系统数学模型;然后结合深度强化学习思想,构造了一种深度强化学习卡尔曼滤波算法,该算法利用贝叶斯规则确保最佳协方差.仿真结果表明,深度强化学习卡尔曼滤波算法对锂离子电池荷电状态的精度有较好的估计.  相似文献   

2.
针对梯次电池荷电状态初始值不明确、估算不准确的问题,提出基于自适应卡尔曼滤波算法的梯次电池荷电状态的估算方法;建立梯次电池的全寿命周期模型,在卡尔曼滤波算法的基础上引入自适应估算原理,实时估算时变噪声,提高滤波稳定性,增强自适应特性.仿真结果表明,当荷电状态初始值为30%、50%、60%时,该算法表现出优良的自适应特性...  相似文献   

3.
准确估算电池荷电状态是电池管理系统的核心技术之一。为提高估算电池荷电状态精度,构建了可描述蓄电池倍率容量特性的二元荷电状态模型,并采用一种改进的粒子滤波算法对LiFePO_4电池进行荷电状态估算。从标准粒子滤波结构入手,先引入残差重采样算法,缓解了传统序贯重要性采样的粒子退化问题;而后在重采样过程中,采用Thompson-Taylor算法对粒子进行随机线性组合,并生成新粒子,可以抑制标准粒子滤波算法执行过程中的粒子贫化问题。基于这种改进的粒子滤波算法实现了对LiFePO_4电池二元荷电状态估算。实验结果表明,改进的粒子滤波算法相比无迹卡尔曼滤波算法,估算电池荷电状态具有更高的精度,估算误差不超过±0.2%。研究结果对电池管理系统估算电池荷电状态具有现实指导意义。  相似文献   

4.
针对卡尔曼滤波算法在锂离子电池荷电状态的估算中存在的稳定性差、系统噪声不确定性等问题,提出了一种基于滑模变结构的卡尔曼滤波算法对锂电池荷电状态(state of charge,SOC)进行动态估算。其基本思路是建立RC等效电路模型,并应用指数趋近律滑模变结构来改善卡尔曼滤波算法的不稳定性,从而提高SOC估算精度。仿真及实验结果表明,所提出的基于滑模变结构的卡尔曼滤波算法在锂电池SOC的估算方面具有良好的精度,误差范围在3%内。  相似文献   

5.
现阶段影响纯电动汽车发展的重要因素之一为电池,而考量电池的一项重要指标为锂电池的荷电状态(SOC),对锂电池荷电状态进行准确估算,可为其剩余里程预测以及电池能量管理提供相应的数据支持。锂电池作为常用的充电设备,其SOC难以估测制约了新能源汽车的发展。针对锂电池荷电状态估算的问题,分析其工作原理,建立磷酸铁锂电池的模型,通过对锂电池内部的相关参数进行辨识,基于扩展卡尔曼滤波算法(EKF)和无轨迹卡尔曼滤波算法(UKF),在Matlab中运用上述算法对磷酸铁锂电池的SOC进行估算。通过仿真得出两种算法的误差,进一步表明UKF具有较高的精确度,其估算误差能够保持在4%范围之内,可满足锂离子电池荷电状态的要求。  相似文献   

6.
荷电状态(state-of-charge,SOC)是锂离子电池预测和健康管理非常重要的一部分。锂离子电池的SOC无法直接测量,因此本文提出了基于随机森林回归算法的锂离子电池SOC估计的方法。首先构建随机森林回归模型,使用电池电流、电池电压、电池温度作为模型的训练输入,相对应的SOC作为模型的训练输出;然后使用随机森林算法进行模型训练;最后将训练模型应用于电池SOC估计。实验结果表明,随机森林回归算法对锂离子电池荷电状态的预测最大估算误差为0.02,均方根误差为0.003 204,该方法能有效地估算锂离子电池SOC并且有很高的估计精度。该模型研究为未来电池荷电状态估算系统的模型构建提供了参考。  相似文献   

7.
根据磷酸铁锂电池的特性,从电池电化学角度分析,建立电池的等效电路模型.通过实验方法测得电池开路电压与SOC关系和电池模型的参数,利用卡尔曼滤波法来估算电池初始荷电状态(SOC0).实验与仿真表明,该算法可以有效的估算出SOC初始值,并可以将误差控制在10%之内.  相似文献   

8.
为能在线准确估算电动汽车动力电池的荷电状态(SOC),提出了一种基于强追踪扩展卡尔曼滤波(STEKF)的锂离子电池的SOC估算方法,该滤波器引入了多重次优渐消因子;以某型锂离子电池为研究对象,基于电池的外特性及相关机理,建立了电池的二阶RC等效电路模型,使用最小二乘法辨识模型参数,然后按照等效电路模型建立电池的STEKF非线性状态空间方程,最后在ECE15工况下进行仿真。结果表明,STEKF估算电池SOC的误差保持在2%以内,该方法能准确估算电池的SOC。  相似文献   

9.
针对电动汽车用锂离子电池组,提出了一种能修正初始误差的荷电状态估算方法,即采用扩展卡尔曼滤波与安时积分的组合算法.在分析电池各种等效电路模型优缺点的基础上,选用具有双阻容并联网络的PNGV改进型电池模型,并以某锂电池为实验对象,对其进行模型参数识别.然后依据电池模型建立电池的非线性状态空间方程,并对电池开路电压与SOC的关系进行多项式拟合.恒流脉冲放电和ECE15工况下的两种实验均表明,文中算法可有效修正SOC的初始误差,并能保证估算精度.  相似文献   

10.
随着电动汽车(electric vehicles, EV)的发展,电池荷电状态(state of charge, SOC)估计受到越来越多关注。荷电状态的精确估计对于电动汽车的能量管理至关重要,然而,估算精度成为限制其发展的瓶颈。本文在阻抗谱分析基础上,利用恒相元件(constant phase element, CPE)导出简化的电池阻抗模型,从而建立模型的状态方程和观测方程;针对锂电池的非线性特性,引入扩展卡尔曼滤波(extended Kalman filtering, EKF),通过在阻抗模型上与EKF算法的融合对锂离子电池进行SOC准确估算;建立电池测试台,通过仿真和电池动态工况试验验证。结果表明,与其他模型和EKF算法相比,所提出的SOC估算方法能有效提高SOC估算精度,并将误差控制在±1%以内,具有较好的收敛性和鲁棒性。  相似文献   

11.
电池荷电状态(SOC)的准确估计对延长电池使用寿命、提高电池利用率和保障电池安全性具有重要意义。在不同环境温度下进行了锂离子电池的基本性能试验和动态工况试验,建立了温变双极化等效电路模型。基于该模型,采用H无穷滤波算法代替传统的扩展卡尔曼滤波算法,在无需假设过程噪声和测量噪声均服从高斯分布的前提下,实现了SOC的精确估计。在考虑温变和电池模型存在误差的条件下进行验证,不同温度条件下的SOC估计最大误差保持在±0.03范围内,证明了所提出的SOC估计算法具有较高的温度适应性和鲁棒性。  相似文献   

12.
为了提高传统卡尔曼滤波法估计锂电池荷电状态(SOC)的精度,在锂电池二阶RC等效电路模型基础上,根据隐马尔科夫模型(HMM)理论并采用遗传算法优化构造出了不同参数状态的电池模型。结合交互式多模型(IMM)算法与无迹卡尔曼滤波(UKF)算法进行SOC估计,提出了一种基于HMM的IMM-UKF算法估计锂电池SOC的方法。锂电池在线SOC估计实验表明,该方法比较其他估计方法有着更高的估计精度,平均绝对误差仅为1%。  相似文献   

13.
安时法是目前估算锂离子电池荷电状态(SOC)最常用的方法之一.由于安时法不能估计初始荷电状态(SOC0),且难于准确测量库仑效率和电池可用容量变化,会造成累计误差,影响SOC估算精度.考虑锂离子电池的可用容量会随环境温度、放电电流以及电池老化等性能影响,结合开路电压法和安时法,对比实验数据进行误差分析与校正,提出了一种提高SOC估算精度的修正参数方法.仿真结果表明,用修正参数的安时法估算电池剩余电量可以减少误差,提高精度.  相似文献   

14.
研究有色噪声下的锂离子电池参数辨识与荷电状态(SOC)估计,并进行硬件在环实验验证.在动力电池模型的参数辨识过程中,利用带遗忘因子的偏差补偿递推最小二乘法进行偏差补偿,提高了有色噪声数据的参数辨识精度.在此基础上,利用自适应扩展卡尔曼算法进行SOC估计,使得滤波算法中的估计结果可以随着噪声统计特性的变化而自适应更新,实现了模型参数和电池状态的联合估计.最后,借助BMS测试系统模拟电池电压电流信息输出,完成了硬件在环实验以验证所提出的方法.实验结果表明,利用所提出算法估计得到的电池端电压和SOC误差分别小于10 mV和0.5%.   相似文献   

15.
锂离子电池的荷电状态(SOC)、健康状态(SOH)和剩余使用使命(RUL)是锂离子电池安全稳定运行的重要状态参数,本文提出一种基于充电电压上升片段的锂离子电池状态联合估计方法,实现对电池预测起点(SP)到寿命终点(EOL)的较长运行周期内SOC、SOH和RUL的联合估计.该框架在充电阶段进行SOH和RUL估计,在放电阶段进行SOC估计.首先提取电池恒流充电电压曲线片段的上升时间作为健康特征(HF),以HF作为输入,循环容量作为输出,建立最小二乘支持向量机(LSSVM)电池老化模型,对当前健康状态进行估计;采用等效电路模型对该电压区段进行非线性拟合,用拟合参数建立状态空间模型,结合无迹卡尔曼滤波算法进行SOC估计;用高斯过程回归时间序列模型对电池的健康特征序列进行建模,通过循环次数外推预测健康特征的变化趋势,并结合LSSVM老化模型,对RUL进行预测并给出置信区间.实验结果表明,所提方法具有较高的估计精度和较好的稳定性.  相似文献   

16.
为提高锂离子荷电状态(state of charge,SOC)及健康状态(state of health,SOH)的精度,提出改进双自适应扩展卡尔曼滤波(dual adaptive extended Kalman filter,DAEKF)算法。基于二阶RC模型,建立空间状态方程;选取电池容量作为SOH的表征量,在双扩展卡尔曼滤波算法基础上引入改进的Sage-Husa自适应算法,实现系统协方差矩阵的实时更新;为降低系统计算量,进一步加入多时间尺度理论进行优化。实验结果表明,提出的算法能较准确地估计锂电池的SOC与SOH,SOC的平均误差为0.58%,SOH最大估计误差为0.8%,该算法正确有效。  相似文献   

17.
针对6轮足机器人动力电池的荷电状态(state of charge, SOC)估计精度低、电池模型准确度不高等问题,提出一种基于带遗忘因子的递推最小二乘(recursive least squares with forgetting factor,FFRLS)与自适应扩展卡尔曼滤波(adaptive extended Kalman filtering,AEKF)相结合的估计算法。首先通过FFRLS算法辨识建立动力电池等效模型参数;然后利用AEKF对SOC在线估计,并为参数辨识提供准确的开路电压;最后以机器人锂电池包为对象,在动态应力测试工况(dynamic stress test , DST)下实验验证了该算法可以准确地估算动力电池SOC,SOC估计相对误差在2.5%以内。   相似文献   

18.
基于电化学机理模型的锂离子电池参数辨识及SOC估计   总被引:1,自引:0,他引:1  
采用Fisher信息矩阵进行参数可辨识性分析,解决了参数的辨识问题,进而提出了基于简化电化学机理模型SP2D(simple pseudo-two-dimensional)的SOC(电池电量)在线估计方法。实验表明,该SOC估计方法较基于等效电路模型(一阶RC模型)的SOC估计方法,可将SOC估计的平均误差减小近30%,而在电池放电中后期更可减小达60%,有效解决了在电池全工作范围内的SOC高精度估计问题。  相似文献   

19.
基于粒子滤波的锂离子电池剩余使用寿命预测   总被引:1,自引:1,他引:0  
锂离子电池因其循环寿命产生的问题更加被重视。为了对锂离子电池的剩余循环使用寿命进行预测研究,采用了粒子滤波算法。首先对粒子滤波算法进行了概述。然后用它对电池的剩余使用寿命预测。简要描述了3组电池数据下的实验;并与扩展卡尔曼滤波进行了对比实验分析。实验结果表明了粒子滤波算法在3组数据下的绝对误差平均值近似4%,均方根误差平均值近似5%,扩展卡尔曼滤波的绝对误差平均值和均方根误差平均值分别近似6%和7%。说明了粒子滤波在锂离子电池剩余使用寿命预测中比扩展卡尔曼滤波精度更高。  相似文献   

20.
由于电池制造工艺的制约导致生产出的电池间存在一定的离散性,多次充放电后不一致性更加严重,因此有必要对电动汽车电池组进行均衡.在分析了锂电池间不一致性的基础上建立了双向均衡结构,采用粒子滤波PF(Particle Filter)法估算电池初始剩余电量SOC(State Of Charge),提出了先让高SOC电池放电和先给低SOC电池充电的均衡法.该方法相比传统基于充电电压的均衡法能更精确的反映电池能量状态.实验结果表明,对于要求低能耗的系统采用先让高SOC电池放电均衡至±2%平均SOC界限范围;对于要求均衡结果一致性较高的系统采用先给低SOC电池充电均衡至±1%平均SOC界限范围.该均衡方法有效改善了电池组间的不一致性,对于提高电动汽车锂离子电池的使用寿命和续航里程具有实际意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号