首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 164 毫秒
1.
脑电电极是脑电采集系统的第一环节,高效便捷稳定地获取脑电信号是研究脑科学的重要保证.从传统的Ag-AgCl湿电极到石墨烯干电极、多孔陶瓷半干电极,检测电极的发展已经获得长足进步.介绍了脑电采集系统的结构、脑电极的分类方法和各类电极的近期研究成果及专利,并讨论了电极新型材料的选取、更优结构的设计以及先进加工制备工艺,最后分析了脑电极的研究方向和发展前景,对脑电采集电极的学习及设计有参考价值.  相似文献   

2.
目前基于脑机接口的脑电信号研究得到越来越广泛的关注,然而传统脑电信号采集需要使用电极帽并涂抹胶泥膏而不被大多数用户所接受。因此,将研究使用无需涂抹胶泥膏的独立电极采集脑电信号,然而使用独立电极采集脑电信号容易出现干扰大、信号不稳定等缺陷。为了快速有效提取脑电信号特征并克服独立电极采集脑电信号的缺陷,将采用低通滤波方法进行工频干扰的滤除,利用独立成分分析(ICA)实现脑电信号中的眼电伪迹分离,并在此基础上通过设置水平眼电和垂直眼电阈值以及各个独立成分在脑部位置的空间分布特性实现眼电伪迹的识别。最后,分别利用β波能量以及样本熵来衡量人脑专注度的高低,仿真结果表明两者均与专注度成正相关,实验以Neuro Sky专注度为基准,将两种算法分别与其进行对照。此外,样本熵与Neuro Sky算法的相关度比β波能量法提高了26%,说明样本熵专注度提取算法更能精确跟踪人脑注意力的变化,对脑电信号专注度的衡量与实际更加吻合。  相似文献   

3.
脑电图作为录制脑部神经生理反应产生的电化学活动的有效成像手段,诞生于20世纪20年代。脑电采集用电极作为一种能够有效地将脑部电化学活动产生的离子电位转换成测量系统电子电位的传感器,被广泛应用于临床检测、诊断和康复等研究领域。近年来,由于脑电采集用电极在脑电图采集领域的迫切应用需求,各种脑电采集用电极结构及制造方法不断涌现。通过对现有的脑电采集用电极进行分类(包括传统银/氯化银电极、微针电极、半干电极、电容/非接触电极、杂类电极),对其制造工艺、结构和使用方法进行了全面的综述;最后分析了脑电采集用电极在使用中存在的问题并对应用前景进行了展望。  相似文献   

4.
无机柔性光电子技术由于具有柔性、便携、大面积等优点而受到科研人员的广泛关注,并取得了长足的进展.制备无机柔性光电子器件的技术关键是将传统刚性衬底上的纳米"构筑单元"(Building Blocks)以一种可控的、精确的、具有超高对准度的方式集成在柔性基底上.本文针对"转印"(Transfer Printing)技术中纳米"构筑单元"向柔性衬底集成时的可控转移及确定性组装(Deterministic Assembly)等难题,提出了边缘剪切转移技术,实现了柔性硅纳米带阵列在柔性基底上的制备及确定性组装.结合悬臂梁模型及有限元模拟,得出悬空硅纳米带内部在边缘剪切转移过程中所产生的应力与其厚度、宽度之间的函数关系.此外,本文还研究了不同方向硅条带在边缘剪切转移的过程中所制备硅纳米带的边缘形貌,并优化初始硅条带的方向,得到边缘平整的硅纳米带.最终,利用该技术制备出柔性衬底上的硅基光波导.  相似文献   

5.
在低温条件下采用两步法在聚酰亚胺(PI)薄膜上制备ZnO纳米阵列。首先,在90℃条件下,用旋涂法在柔性PI衬底上生长1层ZnO缓冲层,然后,在柔性衬底上用水热法制备ZnO纳米阵列。研究十二烷基磺酸钠(SDS)的最佳用量并优化ZnO的制备条件。对PI薄膜进行酸碱处理以提高其表面粗糙度和润湿性能,通过锌浓度测定仪测量SDS的最佳用量为0.70 g。样品的形貌、尺寸和结构通过傅里叶红外光谱仪(FT-IR)、原子力显微镜(AFM)、场发射扫描电子显微镜(FESEM)和X线衍射仪(XRD)进行表征。结果表明:ZnO纳米棒为六角纤锌矿结构,沿C轴方向择优生长,反应浓度与反应时间影响纳米棒阵列的直径与垂直度。ZnO阵列的光致发光(PL)性能表明,在380 nm有紫外光(UV)发射峰,在450 nm有蓝光发射峰。380 nm处的UV发射峰由自由激子复合引起,450 nm处的蓝光发射峰可能由电子的跃迁引起。  相似文献   

6.
针对现有脑电设备便携性差的问题,提出了一种基于嵌入式的可穿戴干电极脑机接口(BCI)系统。该系统首先通过干电极配合24位模数转换芯片采集脑电信号,然后使用FIR数字滤波的方法进行3~35Hz带通滤波,最后通过嵌入式处理器进行脑电识别。在识别算法方面,首先对脑电信号进行截断处理,去除视觉刺激延迟以及FIR滤波造成的群延迟;然后采用皮尔逊相关系数法进行在线脑电识别,并分析刺激时长对正确率和信息传输率的影响。实验结果表明:该系统采集信号的平均信噪比为74.86dB,50Hz处共模抑制比为-132.57dB,所用的相关系数法平均识别时间为0.13s,四目标在线稳态视觉诱发电位实验的平均正确率为69.54%。与使用标准典型相关分析(CCA)算法的便携式BCI系统相比,该系统的平均识别时间缩短0.27s,平均正确率提高了10%,可为干电极脑机接口系统应用提供思路。  相似文献   

7.
在处理脑电图(Electroencephalogram,EEG)过程中,对采集到脑电信号的预处理特别重要.文中利用信号分析与处理知识,在Matlab软件平台上仿真分析了不同小波基函数对脑电信号分解和重构的影响,以及利用db5小波基函数对EEG进行5层多尺度分解和重构,仿真信号颤动情况.通过采用不同阈值进行降噪和与低通滤波器的消噪仿真比较,对特定频带仿真结果进行分析和研究.研究结果表明:小波分析在EEG信号预处理降噪中可有效地提取脑电微信号,对EEG在更广的领域里发挥作用具有实用意义.  相似文献   

8.
随着外延剥离技术和转印技术的发展,柔性无机半导体集成器件引起人们的广泛关注.柔性无机发光二级管(LED)的研制是高精度转印技术和应用于生物传感的柔性混合集成技术的迫切需求.薄膜发光二级管(TF-LEDs)的电流扩展和热管理是研制TF-LEDs性能的关键.该文采用光刻胶微支撑结构,制备了两种结构的TF-LEDs,并将其转印到柔性衬底聚二甲基硅氧烷(PDMS)上,测试TF-LEDs的电学特性.采用二维有限元模拟仿真,综合考虑复合机制、晶格温度等对LEDs电学特性的影响,分析了条形电极结构TF-LEDs和环形电极结构TF-LEDs的电流扩展问题,说明环形电极结构TF-LEDs电流分布均匀性好,自发热效应较小;在柔性衬底上,可以在相对较大的功率下连续工作而不会因为温度过高而造成器件损坏.  相似文献   

9.
采用金属有机物气相外延(MOVPE)技术在c面蓝宝石衬底上,引入脉冲原子层外延技术,制备了一系列表面平整度较高的高Al组分AlGaN基异质结构外延片.并采用电子束金属蒸镀技术及优化热退火方法,获得了良好的欧姆接触电极,进一步将外延片制备成LED管芯.通过对量子结构有源层量子阱混晶组分的设计和调整,掌握并实现了主波长260~330 nm紫外LED结构材料的制备.  相似文献   

10.
采用自组装技术制备大面积有序聚苯乙烯微球模板.在此基础上,制备Co/Pt多层膜纳米碗列阵阵列.利用扫描电子显微镜(SEM)和振动样品磁强计(VSM)对样品表面形貌和磁性进行了分析.结果表明:纳米碗阵列保留了聚苯乙烯微球模板的有序形貌.磁性多层膜随着Pt或Co厚度的增大,矫顽力和Mr/Ms变化的总体趋势是先增大后减小.随着衬底胶体球半径的增加,曲率诱导作用逐渐减弱,矫顽力降低.  相似文献   

11.
脑电中不同类型的基本节律在不同生理条件下特征不同,有效提取这些特征对于实现脑电定量分析具有重要作用。简要分析了谐波小波独特的优势,研究了基于离散谐波小波包方法精确提取脑电基本节律的问题,得到了两种反映节律特征的量化参数:单个导联上各节律在某时刻的频带能量比例(FBER-S)和某一导联脑电信号在某一频段内的能量占所有导联在该频段内能量的百分比(FBER-A)。对临床病例数据分析表明,这两种特征参数呈现的特点与确诊病例的病症特点吻合得很好,说明它们能够作为临床诊断和长时程脑电监护的有效辅助诊断依据。  相似文献   

12.
报道了采用σ偏振钛宝石激光端面泵浦a切割掺钕钒酸钇薄片激光器中的偏振热透镜补偿特性研究,在常温下获得2mW低阈值、大于50%的高光-光转换效率的连续基横模运转,在880mW注入泵浦功率下,输出440mW的TEM00模激光.同时,研究了随着泵浦功率的增加,激光的纵模演化特性.结果表明,以σ偏振泵浦时,π偏振的1.064μm激光功率相对波动度小于1%.  相似文献   

13.
基于共空间模式和神经元网络的脑-机接口信号的识别   总被引:1,自引:0,他引:1  
提出了一种基于共空间模式和LVQ神经元网络对不同意识的脑电信号进行分类的方法.脑电信号是通过电极在头皮表面采集的脑-机接口的控制信号,提取脑电信号特征并对其进行分类,组成不依赖于正常的由外围神经和肌肉组成的输出通路的通讯系统.首先利用小波包分解对原始脑电信号进行预处理,对分解后特定小波包子带的脑电信号进行共空间模式分解,提取最优的特征;然后利用LVQ网络对不同意识任务特征进行分类,实验结果表明,该方法取得了92.7%的平均分类识别率,已经达到脑-机接口实际应用的标准.  相似文献   

14.
Finite resources of the world''s fossil fuel give rise to the irresistible urge to explore alternative renewable energy routes such as microbial fuel cells (MFCs). The limited productivity is one of the main obstacles for MFC scalability. In this study, a dual-chamber MFC was assembled and equipped with fabricated modified cathodes with titanium dioxide (TiO2) or hybrid graphene (HG) which mainly improved the catalytic activity of the cathode. The graphite paste (GP) bare electrode was modified by both nanomaterials using a green and facile technique. The results showed that the modified cathodes resulted in a considerable improvement for the MFC performance, i.e., the power density reaching levels of 80 mW/m2 for GP-TiO2 and 220 mW/m2 for GP-HG compared to 30 mW/m2 for GP electrode. Additionally, the modified electrodes exhibited lower charge transfer resistance (Rct) compared to the bare electrode. Therefore, these modified electrodes, fabricated by an eco-friendly method, could be used as alternatives to the precious expensive metals like Pt.  相似文献   

15.
提出了一种可显著改善碳纳米管(CNTs)场致发射性能的ZnO/Ag双层膜负反馈阴极电极的制备方法.在条形银电极上溅射沉积一定厚度的Zn膜,经热氧化和湿法刻蚀制备成ZnO/Ag双层膜电极.同单层的Ag或氧化铟锡电极相比,该电极不仅具有足够的负反馈电阻(限流电阻)阻止CNTs场发射中过流的发生,而且降低了条形阴极电极的线性电阻,确保了场发射的均匀性.当溅射沉积Zn膜的厚度从40 nm增到120 nm时,热氧化形成的ZnO由孤岛状的颗粒变为连续体的薄膜,ZnO/Ag双层膜电极的表面光洁度比单层的Ag电极有很大的提高,负反馈电阻层的电阻增大,负反馈的能力增强.CNTs薄膜阴极场发射特性曲线证明,ZnO/Ag双层膜电极能明显降低场发射电流的波动,有效提高器件的稳定性和寿命.  相似文献   

16.
声表面波谐振型气体传感器的研究   总被引:1,自引:0,他引:1  
分析和设计了声表面波谐振型气体传感器的叉指换能器和反射栅的最佳结构,研制了ST切石英基底的双端对声表面波谐振型气体传感器,研制了一种高稳定性的振荡器电路。用所研制的ST切石英基底,谐振频率148.5 MHz,敏感薄膜为酞菁铜的双端对声表面波谐振型气体传感器进行了NO_2气体传感检测实验,检测了传感器声表面波振幅的变化,其优点是传感器的声表面波振幅的温度波动远小于通常传感器所检测的声速,提高检测温度稳定性。实验结果证明了所研制的器件具有很好的实用性。  相似文献   

17.
以镍铬合金为基体电极,采用电沉积技术制备了银微粒电极.用扫描电镜表征了基体电极电沉积前后的形貌特征.利用循环伏安技术研究了该银微粒电极对血红蛋白(Hb)的直接电化学行为.实验结果表明具有立体结构的银微粒对血红蛋白具有良好的电催化活性,实现了血红蛋白分子的直接电子转移.在1×10-6 mol·L-1~2×10-5 mol·L-1范围内,Hb氧化峰电流和Hb浓度有较好的线性关系.该银微粒电极制备简单,性能稳定,使用寿命相对较长,可有望用于蛋白质的分析测定和实现Hb在第三代生物传感器的开发和应用.  相似文献   

18.
利用马来酰亚胺基类酯(Sulfo-SMCC)为异双功能偶联剂,将巯基修饰好的DNAzyme共价固定在已负载亚甲基蓝的氨基化介孔二氧化硅纳米材料上,并将壳聚糖混合后滴涂至碳糊电极表面上形成了电化学生物传感膜.利用循环伏安法、电化学阻抗法等对膜电极的制备过程进行了相应的表征.结果表明:基于巯基修饰的DNAzyme已成功固定于二氧化硅纳米材料上,并在碳糊电极表面上形成了稳定的膜.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号